2020 Vol. 63, No. 3
Article Contents

YANG Wei, WANG BaoShan, PENG ZhiGang, TIAN XiaoFeng, YUAN SongYong. 2020. The structure feature of step-over basin along Garzê-Yushu Fault from analysis of fault zone head wave. Chinese Journal of Geophysics (in Chinese), 63(3): 1197-1213, doi: 10.6038/cjg2020N0256
Citation: YANG Wei, WANG BaoShan, PENG ZhiGang, TIAN XiaoFeng, YUAN SongYong. 2020. The structure feature of step-over basin along Garzê-Yushu Fault from analysis of fault zone head wave. Chinese Journal of Geophysics (in Chinese), 63(3): 1197-1213, doi: 10.6038/cjg2020N0256

The structure feature of step-over basin along Garzê-Yushu Fault from analysis of fault zone head wave

  • Fund Project:

    政府间国际科技创新合作重点专项(2016YFE0109300),国家自然科学基金项目(41974069)和中国地震局地球物理研究所基本科研业务费专项(DQJB19B32)共同资助

  • An improved understanding of the fine structure of an active fault zone and its adjacent regions can help us better understand the nucleation and process of earthquakes. The boundaries of different tectonic plates or blocks often form a Low Velocity Zone (LVZ) along the bi-material interface. The existence of the bi-material interface and LVZ can produce unique seismic wave phenomenon such as fault zone head and trapped waves, can affect the physical process and rupture direction of earthquakes. This paper analyze Fault Zone Head Wave (FZHW) base on the aftershock data of the MW6.9 Yushu earthquake on April 14, 2010, recorded by the portable seismic stations set up near the Garzê-Yushu fault (GYF). The results show that the FZHWs were observed at different segments along the GYF, and the average P-wave velocity contrast along the interface is 5%~8% at 3 stations near the Jielong basin in the western GYF, and that at other stations is 1%~3%. The structure of the step-over basin in the GYF is obtained by analyzing the relationship between the location of the stations and the characteristics of the FZHWs. It shows that the length of the basin is ~40 km, the width is 5.35~5.97 km, and the depth is no more than 5 km, forming a shallow layer with a LVZ of several km. The LVZ produced two bi-material interfaces at the basin boundary with the Bayan Har block (NE) and the Qiangtang block (SW), but did not extend to the focal depths of the Yushu mainshock and its aftershocks. Our results suggest that analyzing FZHWs provide new constraints on the geometry of bi-material fault interface and high-resolution fault zone images.

  • 加载中
  •  

    Allam A A, Ben-Zion Y, Peng Z G. 2014. Seismic imaging of a bimaterial interface along the Hayward fault, CA, with fault zone head waves and direct P arrivals. Pure and Applied Geophysics, 171(11):2993-3011, doi:10.1007/s00024-014-0784-0.

     

    Ampuero J P, Ben-Zion Y. 2008. Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction. Geophysical Journal International, 173(2):674-692, doi:10.1111/j.1365-246X.2008.03736.x.

     

    Bennington N L, Thurber C, Peng Z G, et al. 2013. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography:Application at Parkfield, California. Journal of Geophysical Research:Solid Earth, 118(3):1008-1014, doi:10.1002/jgrb.50072.

     

    Ben-Zion Y. 1989. The response of two joined quarter spaces to SH line sources located at the material discontinuity interface. Geophysical Journal International, 98(2):213-222. doi: 10.1111/j.1365-246X.1989.tb03346.x

     

    Ben-Zion Y. 1990. The response of two half spaces to point dislocations at the material interface. Geophysical Journal International, 101(3):507-528. doi: 10.1111/j.1365-246X.1990.tb05567.x

     

    Ben-Zion Y, Aki K. 1990. Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone. Bulletin of the Seismological Society of America, 80(4):971-994.

     

    Ben-Zion Y, Malin P. 1991. San Andreas fault zone head waves near Parkfield, California. Science, 251(5001):1592-1594. doi: 10.1126/science.251.5001.1592

     

    Ben-Zion Y. 2001. Dynamic ruptures in recent models of earthquake faults. Journal of the Mechanics and Physics of Solids, 49(9):2209-2244. doi: 10.1016/S0022-5096(01)00036-9

     

    Ben-Zion Y, Peng Z G, Okaya D, et al. 2003. A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey. Geophysical Journal International, 152(3):699-717. doi: 10.1046/j.1365-246X.2003.01870.x

     

    Ben-Zion Y, Sammis C. 2003. Characterization of fault zones. Pure and Applied Geophysics, 160(3-4):677-715.

     

    Bulut F, Ben-Zion Y, Bohnhoff M. 2012. Evidence for a bimaterial interface along the Mudurnu segment of the North Anatolian Fault Zone from polarization analysis of P waves. Earth and Planetary Science Letters, 327-328:17-22, doi:10.1016/j.epsl.2012.02.001.

     

    Chen L C, Wang H, Ran Y K, et al. 2010. The MS7.1 Yushu earthquake surface rupture and large historical earthquakes on the Garzê-Yushu Fault. Chinese Science Bulletin, 55(31):3504-3509, doi:10.1007/s11434-010-4079-2.

     

    Chester F M, Evans J P, Biegel R L. 1993. Internal structure and weakening mechanisms of the San Andreas fault. Journal of Geophysical Research:Solid Earth, 98(B1):771-786. doi: 10.1029/92JB01866

     

    Evans J P, Chester F M. 1995. Fluid-rock interaction in faults of the San Andreas system:inferences from San Gabriel fault rock geochemistry and microstructures. Journal of Geophysical Research:Solid Earth, 100(B7):13007-13020. doi: 10.1029/94JB02625

     

    Guo J M, Zheng J J, Guan B B, et al. 2012. Coseismic surface rupture structures associated with 2010 MS7.1 Yushu earthquake, China. Seismological Research Letters, 83(1):109-118, doi:10.1785/gssrl.83.1.109.

     

    Hillers G, Campillo M, Ben-Zion Y, et al. 2014. Seismic fault zone trapped noise. Journal of Geophysical Research:Solid Earth, 119(7):5786-5799. doi: 10.1002/2014JB011217

     

    Hough S E, Ben-Zion Y, Leary P. 1994. Fault zone waves observed at the southern Joshua Tree earthquake rupture zone. Bulletin of the Seismological Society of America, 84(3), 761-767.

     

    Lewis M A, Peng Z G, Ben-Zion Y, et al. 2005. Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California. Geophysical Journal International, 162(3):867-881. doi: 10.1111/j.1365-246X.2005.02684.x

     

    Lewis M A, Ben-Zion Y, McGuire J. 2007. Imaging the deep structure of the San Andreas Fault south of Hollister with joint analysis of fault zone head and direct P arrivals. Geophysical Journal International, 169(3):1028-1042, doi:10.1111/j.1365-246X.2006.03319.x.

     

    Li C Y, Pang J Z, Zhang Z Q. 2012. Characteristics, geometry, and segmentation of the surface rupture associated with the 14 April 2010 Yushu earthquake, eastern Tibet, China. Bulletin of the Seismological Society of America, 102(4):1618-1638, doi:10.1785/0120110261.

     

    Li H B, Wang H, Xu Z Q, et al. 2013. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1). Tectonophysics, 584:23-42, doi:10.1016/j.tecto.2012.08.021.

     

    Li Y G, Leary P G. 1990. Fault zone trapped seismic waves. Bulletin of the Seismological Society of America, 80(5):1245-1271.

     

    Li Z H, Elliott J, Feng W P, et al. 2011. The 2010 MW6.8 Yushu (Qinghai, China) earthquake:Constraints provided by InSAR and body wave seismology. Journal of Geophysical Research:Solid Earth, 116(B10):B10302, doi:10.1029/2011JB008358.

     

    Li Z F, Peng Z G. 2016. Automatic identification of fault zone head waves and direct P waves and its application in the Parkfield section of the San Andreas Fault. Geophysical Journal International, 205(3):1326-1341. doi: 10.1093/gji/ggw082

     

    Liu Q X, Yang Z X, Xin H L, et al. 2012. Relocation of Yushu MS7.1 earthquake aftershocks and discussion on seismogenic structure. Chinese Journal of Geophysics (in Chinese), 55(1):146-154, doi:10.6038/J.issn.0001-5733.2012.01.014.

     

    Ma Y H, Ma H Q. 2013. Relationship between Bayankala block activity of strong earthquakes and Yushu MS7.1 earthquake in 2010. Plateau Earthquake Research (in Chinese), 25(1):1-9.

     

    McGuire J, Ben-Zion Y. 2005. High-resolution imaging of the Bear Valley section of the San Andreas Fault at seismogenic depths with fault-zone head waves and relocated seismicity. Geophysical Journal International, 163(1):152-164, doi:10.1111/j.1365-246X.2005.02703.x.

     

    Najdahmadi B, Bohnhoff M, Ben-Zion Y. 2016. Bimaterial interfaces at the Karadere segment of the North Anatolian Fault, northwestern Turkey. Journal of Geophysical Research:Solid Earth, 121(2):931-950. doi: 10.1002/2015JB012601

     

    Qin L, Ben-Zion Y, Qiu H, et al. 2018. Internal structure of the San Jacinto fault zone in the trifurcation area southeast of Anza, California, from data of dense seismic arrays. Geophysical Journal International, 213(1):98-114. doi: 10.1093/gji/ggx540

     

    Qiu H, Ben-Zion Y, Ross Z E, et al. 2017. Internal structure of the San Jacinto fault zone at Jackass Flat from data recorded by a dense linear array. Geophysical Journal International, 209(3):1369-1388. doi: 10.1093/gji/ggx096

     

    Sagy A, Brodsky E. 2009. Geometric and rheological asperities in an exposed fault zone. Journal of Geophysical Research:Solid Earth, 114(B2):B02301, doi:10.1029/2008JB005701.

     

    Share P E, Ben-Zion Y, Ross Z E, et al. 2017. Internal structure of the San Jacinto fault zone at Blackburn Saddle from seismic data of a linear array. Geophysical Journal International, 210(2):819-832. doi: 10.1093/gji/ggx191

     

    Share P E, Ben-Zion Y. 2016. Bimaterial interfaces in the South San Andreas fault with opposite velocity contrasts NW and SE from San Gorgonio Pass. Geophysical Research Letters, 43(20):10680-10687, doi:10.1002/2016GL070774.

     

    Share P E, Ben-Zion Y. 2018. A bimaterial interface along the northern San Jacinto fault through Cajon Pass. Geophysical Research Letters, 45(21):11622-11631, doi:10.1002/2018GL079834.

     

    Share P E, Allam A A, Ben-Zion Y, et al. 2019. Structural properties of the San Jacinto fault zone at Blackburn Saddle from seismic data of a dense linear array. Pure and Applied Geophysics, 176(3):1169-1191, doi:10.1007/s00024-018-1988-5.

     

    Shi Z Q, Ben-Zion Y. 2006. Dynamic rupture on a bimaterial interface governed by slip-weakening friction. Geophysical Journal International, 165(2):469-484, doi:10.1111/j.1365-246X.2006.02853.x.

     

    Stein S, Wysession M. 2003. An Introduction to Seismology, Earthquakes and Earth Structure. Oxford, UK:Wiley-Blackwell Publishing, 498.

     

    Sun X Z, Xu X W, Chen L C, et al. 2012. Surface rupture features of the 2010 Yushu earthquake and its tectonic implication. Chinese Journal of Geophysics (in Chinese), 55(1):155-170, doi:10.6038/j.issn.0001-5733.2012.01.015.

     

    Sutherland R, Toy V G, Townend J, et al. 2012. Drilling reveals fluid control on architecture and rupture of the Alpine fault, New Zealand. Geology, 40(12):1143-1146, doi:10.1130/G33614.1.

     

    Ujiie K, Tanaka H, Saito T, et al. 2013. Low coseismic shear stress on the Tohoku-Oki megathrust determined from laboratory experiments. Science, 342(6163):1211-1214. doi: 10.1126/science.1243485

     

    Wang B S, Ge H K, Yang W, et al. 2012. Transmitting seismic station monitors fault zone at depth. EOS, Transactions American Geophysical Union, 93(5):49-50.

     

    Wang B S, Yang H F, Peng Z G, et al. 2014. High-resolution aftershock distribution of 2010 MW6.9 Yushu, China earthquake and its implication. Abstract for SSA 2014 Annual Meeting.

     

    Wang B S, Tian X F, Zhang Y P, et al. 2018. Seismic signature of an untuned large-volume airgun array fired in a water reservoir. Seismological Research Letters, 89(3):983-991, doi:10.1785/0220180007.

     

    Wang C Z, Wu J P, Fang L H, et al. 2013. The relationship between wave velocity structure around Yushu earthquake source region and the distribution of aftershocks. Chinese Journal of Geophysics (in Chinese), 56(12):4072-4083, doi:10.6038/cjg20131212.

     

    Wang M, Shen Z K, Gan W J, et al. 2008. GPS monitoring of temporal deformation of the Xianshuihe Fault. Science in China Series D:Earth Sciences, 51(9):1259-1266. doi: 10.1007/s11430-008-0095-3

     

    Wang S F, Fan C, Wang G, et al. 2008. Late Cenozoic deformation along the northwestern continuation of the Xianshuihe fault system, Eastern Tibetan Plateau. GSA Bulletin, 120(3-4):312-327, doi:10.1130/B25833.1.

     

    Wang Y Z, Wang E N, Shen Z K, et al. 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region, China. Science in China Series D:Earth Sciences, 51(9):1267-1283. doi: 10.1007/s11430-008-0106-4

     

    Wen X Z, Xu X W, Zheng R Z, et al. 2003. Average slip-rate and recent large earthquake ruptures along the Garzê-Yushu fault. Science in China Series D:Earth Sciences, 46(S2):276-288.

     

    Xu C, Xu X W, Yu G H. 2013. Landslides triggered by slipping-fault-generated earthquake on a plateau:an example of the 14 April 2010, MS7.1, Yushu, China earthquake. Landslides, 10(4):421-431, doi:10.1007/s10346-012-0340-x.

     

    Yang H F, Li Z F, Peng Z G, et al. 2014. Low-velocity zones along the San Jacinto Fault, Southern California, from body waves recorded in dense linear arrays. Journal of Geophysical Research:Solid Earth, 119(12):8976-8990, doi:10.1002/2014JB011548.

     

    Yang H F. 2015. Recent advances in imaging crustal fault zones:areview. Earthquake Science, 28(2):151-162, doi:10.1007/s11589-015-0114-3.

     

    Yang W, Hauksson E, Shearer P. 2012. Computing a large refined catalog of focal mechanisms for Southern California (1981-2010):Temporal stability of the style of faulting. Bulletin of the Seismological Society of America, 102(3):1179-1194. doi: 10.1785/0120110311

     

    Yang W, Peng Z G, Wang B S, et al. 2015. Velocity contrast along the rupture zone of the 2010 MW6.9 Yushu, China, earthquake from fault zone head waves. Earth and Planetary Science Letters, 416:91-97. doi: 10.1016/j.epsl.2015.01.043

     

    Zhao P, Peng Z G. 2008. Velocity contrast along the Calaveras fault from analysis of fault zone head waves generated by repeating earthquakes. Geophysical Research Letters, 35(1):L01303, doi:10.1029/2007GL031810.

     

    Zhao P, Peng Z G, Shi Z Q, et al. 2010. Variations of the Velocity Contrast and Rupture Properties of M6 Earthquakes along the Parkfield Section of the San Andreas Fault. Geophysical Journal International, 180(2):765-780, doi:10.1111/j.1365-246X.2009.04436.x.

     

    Zhou R J, Ma C H, Cai C X. 1996. Late Quaternary active features of the Ganzi-Yushu fault zone. Earthquake Research in China (in Chinese), 12(3):250-260.

     

    陈立春, 王虎, 冉勇康等. 2010.玉树MS7.1级地震地表破裂与历史大地震.科学通报, 2010, 55(13):1200-1205.

     

    刘巧霞, 杨卓欣, 莘海亮等. 2012.玉树MS7.1级地震部分余震重新定位及发震构造分析.地球物理学报, 55(1):146-154, doi:10.6038/J.issn.0001-5733.2012.01.014.

     

    马玉虎, 马辉青. 2013.巴颜喀拉块体强震活动与2010年玉树7.1级地震的关系.高原地震, 25(1):1-9. doi: 10.3969/j.issn.1005-586X.2013.01.001

     

    孙鑫喆, 徐锡伟, 陈立春等. 2012. 2010年玉树地震地表破裂带典型破裂样式及其构造意义.地球物理学报, 55(1):155-170, doi:10.6038/j.issn.0001-5733.2012.01.015.

     

    王长在, 吴建平, 房立华等. 2013.玉树地震震源区速度结构与余震分布的关系.地球物理学报, 56(12):4072-4083, doi:10.6038/cjg20131212.

     

    王敏, 沈正康, 甘卫军等. 2008. GPS连续监测鲜水河断裂形变场动态演化.中国科学D辑:地球科学, 38(5):575-581.

     

    王阎昭, 王恩宁, 沈正康等. 2008.基于GPS资料约束反演川滇地区主要断裂现今活动速率.中国科学D辑:地球科学, 38(5):582-597.

     

    闻学泽, 徐锡伟, 郑荣章等. 2003.甘孜-玉树断裂的平均滑动速率与近代大地震破裂.中国科学(D辑), 33(S1), 199-208.

     

    周荣军, 马长浩, 蔡长星. 1996.甘孜-玉树断裂带的晚第四纪活动特征.中国地震, 12(3):250-260.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(631) PDF downloads(347) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint