2021 Vol. 37, No. 11
Article Contents

QIN KeZhang, ZHAO JunXing, HE ChangTong, SHI RuiZhe. 2021. Discovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China. Acta Petrologica Sinica, 37(11): 3277-3286. doi: 10.18654/1000-0569/2021.11.02
Citation: QIN KeZhang, ZHAO JunXing, HE ChangTong, SHI RuiZhe. 2021. Discovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China. Acta Petrologica Sinica, 37(11): 3277-3286. doi: 10.18654/1000-0569/2021.11.02

Discovery of the Qongjiagang giant lithium pegmatite deposit in Himalaya, Tibet, China

  • Fund Project:


  • In recent years, the genesis of highly fractionated Cenozoic Himalayan leucogranite, has attracted much attention because of its good potential for rare-metal mineralization. Field investigations and mineral resource surveys have pointed out that the Himalayan leucogranite belt may become an important strategic mineral reserve base for rare metals in China. At present, the discovered metal assemblages in the belt are dominated by beryllium-niobium-tantalum (tin-tungsten) assemblage (such as the Cuonadonglarge tin-tungsten-beryllium deposit), but no industrial lithium ore body has been found. The present work reports a newly discovered, superlarge-scale pegmatite-type lithium deposit in the Qongjiagang area of the Higher Himalayan belt, and we revealed the geological characteristics of the first pegmatite-type lithium deposit in the Himalaya. The Qongjiagang pegmatites belong to peraluminous LCT-family, REL-Li sub-type and albite-spodumene sub-style. The Qongjiagang rare-element pegmatite intruded into marble strata of the Pre-Cambrian Rouqiecun Group as pod-and lense-like bodies, and the ore minerals are mainly spodumene, columbite-group minerals, cassiterite and beryl. The Qongjiagang pegmatites have the internal zonation patterns from rim to core, including saccharoidal albite zone, layered aplite zone and massive microcline+spodumene zone, and the graphic pegmatite zone occurred in the border zone sometimes. Layered aplite zone and massive microcline+spodumene zone hosted a large proportion of spodumene. 44 samples out of 59 analyzed samples have the Li2O contents higher than 0.80%, with average of 1.30%. Our resource estimate indicates the Qongjiagang Li deposit is the first pegmatitic lithium deposit with economic value in the Himalayan leucogranite belt, and its discovery confirms good potentials in the findings of large granitic pegmatitic lithium deposit in the Higher Himalayan region of China.

  • 加载中

    Černý P. 1991. Fertile granites of Precambrian rare-element pegmatite fields: Is geochemistry controlled by tectonic setting or source lithologies? Precambrian Research, 51: 429-468 doi: 10.1016/0301-9268(91)90111-M


    Černý and Ercit TS. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43: 2005-2026 doi: 10.2113/gscanmin.43.6.2005


    Ding HX, Kohn MJ and Zhang ZM. 2021. Long-lived (ca. 22~24Myr) partial melts in the eastern Himalaya: Petrochronologic constraints and tectonic implications. Earth and Planetary Science Letters, 558: 116764 doi: 10.1016/j.epsl.2021.116764


    Harrison TM, Grove M, Lovera OM and Catlos EJ. 1998. A model for the origin of Himalayan anatexis and inverted metamorphism. Journal of Geophysical Research: Solid Earth, 103(B11): 27017-27032 doi: 10.1029/98JB02468


    He CT, Qin KZ, Li JX, Zhou QF, Zhao JX and Li GM. 2020. Preliminary study on occurrence status of beryllium and genetic mechanism in Cuonadong tungsten-tin-beryllium deposit, eastern Himalaya. Acta Petrologica Sinica, 36(12): 3593-3606 (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.12.03


    Le Fort P, Cuney M, Deniel C, France-Lanord C, Sheppard SMF, Upreti BN and Vidal P. 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics, 134(1-3): 39-57 doi: 10.1016/0040-1951(87)90248-4


    Li GM, Zhang LK, Jiao YJ, Xia XB, Dong SL, Fu JG, Liang W, Zhang Z, Wu JY and Dong L. 2017. First discovery and implications of Cuonadong superlarge Be-W-Sn polymetallic deposit in Himalayan metallogeneic belt, southern Tibet. Mineral Deposits, 36(4): 1003-1008(in Chinese with English abstract)


    Li JK, Liu XF and Wang DH. 2014. The metallogenetic regularity of lithium deposit in China. Acta Geologica Sinica, 88(12): 2269-2283 (in Chinese with English abstract)


    Liu C, Wang RC, Wu FY, Xie L, Liu XC, Li XK, Yang L and Li XJ. 2020. Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith. Lithos, 358-359: 105421 doi: 10.1016/j.lithos.2020.105421


    Liu ZC, Wu FY, Ding L, Liu XC, Wang JG and Ji WQ. 2016. Highly fractionated Late Eocene (~35Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243: 337-354 doi: 10.1016/j.lithos.2015.11.026


    Liu ZC, Wu FY, Liu XC and Wang JG. 2020. The mechanisms of fractional crystallization for the Himalayan leucogranites. Acta Petrologica Sinica, 36(12): 3551-3571 (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.12.01


    London D. 2008. Pegmatites. Canadian Mineralogist Special Publication, 10: 1-368


    Martin AJ, Gehrels GE and DeCelles PG. 2007. The tectonic significance of (U, Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal. Chemical Geology, 244(1-2): 1-24 doi: 10.1016/j.chemgeo.2007.05.003


    Ministry of Natural Resources of the People's Republic of China. 2019. China Mineral Resources 2019. Beijing: Geological Publishing House, 1-54 (in Chinese)


    Pan GT, Ding J, Yao DS and Wang LQ. 2004. Geological Map of the Qinghai-Xizang (Tibet) Plateau and Adjacent Areas. Chengdu: Chengdu Gartographic Publishing House (in Chinese)


    Qin KZ, Zhai MG, Li GM, Zhao JX, Zeng QD, Gao J, Xiao WJ, Li JL and Sun S. 2017. Links of collage orogenesis of multiblocks and crust evolution to characteristic metallogeneses in China. Acta Petrologica Sinica, 33(2): 305-325 (in Chinese with English abstract)


    Qin KZ, Zhou QF, Tang DM and Wang CL. 2019. Types, internal structural patterns, mineralization and prospects of rare-element pegmatites in East Qinling Mountain in comparison with features of Chinese Altay. Mineral Deposits, 38(5): 970-982 (in Chinese with English abstract)


    Qin KZ, Zhou QF, Zhao JX, He CT, Liu XC, Shi RZ and Liu YC. 2021. Be-rich mineralization features of Himalayan leucogranite belt and prospects for lithium-bearing pegmatites in higher altitudes. Acta Geologica Sinica, 95(10): 3146-3162 (in Chinese with English abstract)


    Romer RL, Smeds SA and Černý P. 1996. Crystal-chemical and genetic controls of U-Pb systematics of columbite-tantalite. Mineralogy and Petrology, 57(3-4): 243-260 doi: 10.1007/BF01162361


    Streule MJ, Searle MP, Waters DJ and Horstwood MSA. 2010. Metamorphism, melting, and channel flow in the Greater Himalayan Sequence and Makalu leucogranite: Constraints from thermobarometry, metamorphic modeling, and U-Pb geochronology. Tectonics, 29(5): TC5011


    Wang CL. 2017. Li-Be-Nb-Ta mineralization in the Kelumute-Jideke ore deposit cluster, Chinese Altai. Ph. D. Dissertation. Urumqi: University of Chinese Academy of Sciences, 1-256 (in Chinese with English summary)


    Wang H, Gao H, Zhang XY, Yan QH, Xu YG, Zhou KL, Dong R and Li P. 2020. Geology and geochronology of the superlarge-sized Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit in the West Kunlun Orogenic Belt, NW China. Lithos, 360-361: 105449 doi: 10.1016/j.lithos.2020.105449


    Wang RC, Wu FY, Xie L, Liu XC, Wang JM, Yang L, Lai W and Liu C. 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Science China (Earth Sciences), 60(9): 1655-1663 doi: 10.1007/s11430-017-9075-8


    Wang XQ, Liu HL, Wang W, Zhou J, Zhang BM and Xu SF. 2020. Geochemical abundance and spatial distribution of lithium in China: Implications for potential prospects. Acta Geoscientica Sinica, 41(6): 797-806 (in Chinese with English abstract)


    Wu FY, Liu ZC, Liu XC and Ji WQ. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1-36 (in Chinese with English abstract)


    Wu FY, Liu XC, Ji WQ, Wang JM and Yang L. 2017. Highly fractionated granites: Recognition and research. Science China (Earth Sciences), 60(7): 1201-1219 doi: 10.1007/s11430-016-5139-1


    Wu FY, Liu XC, Liu ZC, Wang RC, Xie L, Wang JM, Ji WQ, Yang L, Liu C, Khanal GP and He SX. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352-353: 105319 doi: 10.1016/j.lithos.2019.105319


    Xie L, Tao XY, Wang RC, Wu FY, Liu C, Liu XC, Li XK and Zhang RQ. 2020. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization. Lithos, 354-355: 105286 doi: 10.1016/j.lithos.2019.105286


    Xu ZQ, Wang RC, Zhao ZB and Fu XF. 2018. On the structural backgrounds of the large-scale "Hard-rock Type" lithium ore belts in China. Acta Geologica Sinica, 92(6): 1091-1106 (in Chinese with English abstract)


    Zeng LS, Gao LE, Xie KJ and Liu-Zeng J. 2011. Mid-Eocene high Sr/Y granites in the northern Himalayan gneiss domes: Melting thickened lower continental crust. Earth and Planetary Science Letters, 303(3-4): 251-266 doi: 10.1016/j.epsl.2011.01.005


    Zhang JJ, Santosh M, Wang XX, Guo L, Yang XY and Zhang B. 2012. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Research, 21(4): 939-960 doi: 10.1016/j.gr.2011.11.004


    Zhao JX, He CT, Qin KZ, Shi RZ, Liu XC, Hu FY, Yu KL and Sun ZH. 2021. Geochronology, source features and the characteristics of fractional crystallization in pegmatite at the Qongjiagang giant pegmatite-type lithium deposit, Himalaya, Tibet. Acta Petrologica Sinica, 37(11): 3325-3347 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.06


    Zhou QF, Qin KZ, Tang DM, Wang CL and Ma LS. 2019. Mineralogical characteristics and significance of beryl from the rare-element pegmatites in the Lushi County, East Qinling, China. Acta Petrologica Sinica, 35(7): 1999-2012(in Chinese with English abstract) doi: 10.18654/1000-0569/2019.07.04


    Zhou QF, Qin KZ and Tang DM. 2021. Mineralogy of columbite-group minerals from the rare-element pegmatite dykes in the East-Qinling orogen, central China: Implications for formation times and ore genesis. Journal of Asian Earth Sciences, 218: 104879 doi: 10.1016/j.jseaes.2021.104879


    Zhou QF, Qin KZ, He CT, Wu HY, Liu YC, Niu XL, Mo LC, Liu XC and Zhao JX. 2021. Li-Be-Nb-Ta mineralogy of the Kuqu leucogranite and pegmatite in the Eastern Himalaya, Tibet, and its implication. Acta Petrologica Sinica, 37(11): 3305-3324 (in Chinese with English abstract) doi: 10.18654/1000-0569/2021.11.05


    何畅通, 秦克章, 李金祥, 周起凤, 赵俊兴, 李光明. 2020. 喜马拉雅东段错那洞钨-锡-铍矿床中铍的赋存状态及成因机制初探. 岩石学报, 36(12): 3593-3606


    李光明, 张林奎, 焦彦杰, 夏祥标, 董随亮, 付建刚, 梁维, 张志, 吴建阳, 董磊. 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义. 矿床地质, 36(4): 1003-1008


    李建康, 刘喜方, 王登红. 2014. 中国锂矿成矿规律概要. 地质学报, 88(12): 2269-2283


    刘志超, 吴福元, 刘小驰, 王建刚. 2020. 喜马拉雅淡色花岗岩结晶分异机制概述. 岩石学报, 36(12): 3551-3571 doi: 10.18654/1000-0569/2020.12.01


    潘桂棠, 丁俊, 姚东生, 王立全. 2004. 青藏高原及邻区地质图(1: 1500000). 成都: 成都地图出版社


    秦克章, 翟明国, 李光明, 赵俊兴, 曾庆栋, 高俊, 肖文交, 李继亮, 孙枢. 2017. 中国陆壳演化、多块体拼合造山与特色成矿的关系. 岩石学报, 33(2): 305-325


    秦克章, 周起凤, 唐冬梅, 王春龙. 2019. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景——兼与阿尔泰地区对比. 矿床地质, 38(5): 970-982


    秦克章, 周起凤, 赵俊兴, 何畅通, 刘小驰, 施睿哲, 刘宇超. 2021. 喜马拉雅淡色花岗岩带伟晶岩的富铍成矿特点及向更高处找锂. 地质学报, 95(10): 3146-3162


    王春龙. 2017. 阿尔泰柯鲁木特-吉得克矿集区Li-Be-Nb-Ta成矿作用. 博士学位论文. 乌鲁木齐: 中国科学院大学, 1-256


    王汝成, 吴福元, 谢磊, 刘小驰, 王佳敏, 杨雷, 赖文, 刘晨. 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究. 中国科学(地球科学), 47(8): 871-880


    王学求, 刘汉粮, 王玮, 周建, 张必敏, 徐善法. 2020. 中国锂矿地球化学背景与空间分布: 远景区预测. 地球学报, 41(6): 797-806


    吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36


    吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究. 中国科学(地球科学), 47(7): 745-765


    许志琴, 王汝成, 赵中宝, 付小方. 2018. 试论中国大陆"硬岩型"大型锂矿带的构造背景. 地质学报, 92(6): 1091-1106 doi: 10.3969/j.issn.0001-5717.2018.06.001


    赵俊兴, 何畅通, 秦克章, 施睿哲, 刘小驰, 胡方泱, 余可龙, 孙政浩. 2021. 喜马拉雅琼嘉岗超大型伟晶岩锂矿的形成时代、源区特征及分异特征. 岩石学报, 37(11): 3325-3347 doi: 10.18654/1000-0569/2021.11.06


    中华人民共和国自然资源部. 2019. 中国矿产资源报告2019. 北京: 地质出版社, 1-54


    周起凤, 秦克章, 唐冬梅, 王春龙, 马留锁. 2019. 东秦岭卢氏稀有金属伟晶岩的绿柱石矿物学特征及其指示意义. 岩石学报, 35(7): 1999-2012


    周起凤, 秦克章, 何畅通, 吴华英, 刘宇超, 牛向龙, 莫凌超, 刘小驰, 赵俊兴. 2021. 喜马拉雅东段库曲岩体锂、铍和铌钽稀有金属矿物研究及指示意义. 岩石学报, 37(11): 3305-3324 doi: 10.18654/1000-0569/2021.11.05

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索



Article Metrics

Article views(818) PDF downloads(538) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint