2021 Vol. 41, No. 2
Article Contents

CHEN Youping, CHEN Feng, ZHANG Heli, HU Mao, WANG Shijie, ARIEL Hadad Martín, ALEJANDRO Roig Juñent Fidel. Strong link of large volcanic eruptions and climatic and hydrological changes recorded by tree rings in the river source area of Southern High Asia since 1200 A.D.[J]. Quaternary Sciences, 2021, 41(2): 323-333. doi: 10.11928/j.issn.1001-7410.2021.02.02
Citation: CHEN Youping, CHEN Feng, ZHANG Heli, HU Mao, WANG Shijie, ARIEL Hadad Martín, ALEJANDRO Roig Juñent Fidel. Strong link of large volcanic eruptions and climatic and hydrological changes recorded by tree rings in the river source area of Southern High Asia since 1200 A.D.[J]. Quaternary Sciences, 2021, 41(2): 323-333. doi: 10.11928/j.issn.1001-7410.2021.02.02

Strong link of large volcanic eruptions and climatic and hydrological changes recorded by tree rings in the river source area of Southern High Asia since 1200 A.D.

More Information
  • Long-term climate proxy data is very important for understanding past climate changes and assess the influences of large volcanic eruptions. A total of 81 cores were taken from Picea brachytyla trees in the Zhujiaola Mountain(31°3'N, 96°58'E; 4277 m a.s.l.), Changdu city, southeastern Tibetan Plateau in June, 2020. All cores were air-dried prior to mounting and sanding, and prepared following standard dendrochronological techniques. And the CooRecorder 9.4 ring analyzer with accuracy of 0.01 mm was used to measure the tree-ring width of all cores. The quality of cross-dating was checked by using the COFECHA program. Finally, the standard chronology during 1135~2019 A.D. was developed by ARSTAN program for subsequent analysis. Climate-growth relationship analysis between tree ring width chronology and climate data showed that mean minimum temperature from November of previous year to current year February was the main factor controlling tree-ring growth in the Zhujiaola Mountain, southeastern Tibetan plateau, and the total precipitation from August of previous year to current year May states on the growth effect are significant. Mean minimum temperature from previous November to February since 1200 A.D. were then reconstructed based on the tree-ring width chronology using a simple liner regression model. The reconstruction explained 47.1% of the variance in the instrumental temperature records during the calibration period(1954~2019 A.D.). The reconstruction exhibits decadal to inter-decadal temperature variability, with cold periods occurring in 1206~1227, 1234~1332, 1356~1372, 1465~1548, 1588~1602, 1728~1832, 1899~1935 and 1947~1987, and warm periods in 1333~1355, 1373~1388, 1397~1464, 1549~1587, 1603~1634, 1643~1727, 1833~1898, 1936~1946 and 1988~2019. Meanwhile, the reconstruction contains ten extreme cold years(1474, 1504, 1534, 1757, 1789, 1793, 1817, 1968, 1972 and 1982) and twenty three extremely warm years(1407, 1410, 1412, 1422, 1423, 1424, 1448, 1673, 1674, 1682, 1683, 1694, 1698, 1700, 1701, 1702, 1706, 1708, 2000, 2013, 2015, 2016 and 2017). The temperature fluctuations of the reconstructed sequence were in accordance with other temperature reconstruction in the southeastern Tibetan plateau. All of above mentioned information demonstrated the reliability of reconstructed temperature. At the same time, the temperature reconstruction sequence verified the cooling effect after 27 large volcanic eruptions since 1200 A.D., including the large volcanic eruptions of Samalas in 1257 and Tambora in 1815. In addition, the comparison between the temperature reconstruction sequence and the related river runoff data shows that the strong volcanic eruption may cause significant decrease in the temperature of the river source area in Southern High Asia, and may further slowed down the water cycle, resulting in the decrease of river runoff in Southern High Asia.

  • 加载中
  • [1]

    张兴, 方修琦, 尹君. 1525-2000年强火山喷发与ENSO事件的关系[J]. 北京师范大学学报(自然科学版), 2017, 53(5): 587-594.

    Zhang Xing, Fang Xiuqi, Yin Jun. Correlating strong volcano eruptions and ENSO events 1525-2000[J]. Journal of Beijing Normal University(Natural Science), 2017, 53(5): 587-594.

    [2]

    郝志新, 孙迪, 张学珍, 等. 20世纪以来强火山喷发对中国温度变化区域差异的影响[J]. 地理科学进展, 2016, 35(3): 331-338.

    Hao Zhixin, Sun Di, Zhang Xuezhen, et al. Regional differences in temperature response in China to the large volcanic eruptions since the 20th century[J]. Progress in Geography, 2016, 35(3): 331-338.

    [3]

    王欢, 郝志新, 郑景云. 1750-2010年强火山喷发事件的时空分布特征[J]. 地理学报, 2014, 69(1): 134-140.

    Wang Huan, Hao Zhixin, Zheng Jingyun. Spatial and temporal characteristics of large volcanic eruptions in 1750-2010[J]. Acta Geographica Sinica, 2014, 69(1): 134-140.

    [4]

    张琨佳, 陈思颖, 苏筠. 公元1500-2000年印度尼西亚-菲律宾强火山喷发对中国中东部旱涝格局的影响[J]. 古地理学报, 2020, 22(1): 193-206.

    Zhang Kunjia, Chen Siying, Su Yun. Impact of large volcanic eruptions in Indonesia-Philippines on the drought-flood conditions of Central and Eastern China during AD 1500-2000[J]. Journal of Palaeogeography, 2020, 22(1): 193-206.

    [5]

    徐群. 1980年夏季我国天气气候反常和St. Helens火山喷发的影响[J]. 气象学报, 1986, 44(4): 426-432.

    Xu Qun. The abnormal weather of China for summer 1980 and its relationship with the volcanic eruptions of St. Helens[J]. Acta Meteorologica Sinica, 1986, 44(4): 426-432.

    [6]

    Oppenheimer C. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano(Indonesia) 1815[J]. Progress in Physical Geography, 2003, 27(2): 230-259. doi: 10.1191/0309133303pp379ra

    [7]

    Raible C C, Brönnimann S, Auchmann R, et al. Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects[J]. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7(4): 569-589. doi: 10.1002/wcc.407

    [8]

    Rampino M R, Self S. Historic eruptions of Tambora (1815), Krakatau(1883), and Agung(1963), their stratospheric aerosols, and climatic impact[J]. Quaternary Research, 1982, 18(2): 127-143. doi: 10.1016/0033-5894(82)90065-5

    [9]

    谢哲宇, 裘冰倩, 肖河, 等. 东北哈尼泥炭14 ka B.P. 以来大气汞沉降历史记录[J]. 第四纪研究, 2019, 39(6): 1333-1345.

    Xie Zheyu, Qiu Bingqian, Xiao He, et al. Study on the atmospheric mercury deposition data that retrieved from Hani peat in Northeast China since 14 ka B.P. [J]. Quaternary Sciences, 2019, 39(6): 1333~1345

    [10]

    黄小忠, 向丽雄, 张恩源, 等. 全新世中期7 ka前后降温事件对中国北方植被生态的影响[J]. 第四纪研究, 2019, 39(3): 687-700.

    Huang Xiaozhong, Xiang Lixiong, Zhang Enyuan, et al. Mid-Holocene cold event at ca. 7 ka and its impact on vegetation ecology in Northern China[J]. Quaternary Sciences, 2019, 39(3): 687-700.

    [11]

    史江峰, 史逝远, 马晓琦, 等. 我国东南和华北季风区树轮气候和环境变化研究进展[J]. 第四纪研究, 2018, 38(6): 1471-1486.

    Shi Jiangfeng, Shi Shiyuan, Ma Xiaoqi, et al. Progress of tree-ring studies in climate and environment in Southeast China and North China[J]. Quaternary Sciences, 2018, 38(6): 1471-1486.

    [12]

    方克艳, 陈秋艳, 刘昶智, 等. 树木年代学的研究进展[J]. 应用生态学报, 2014, 25(7): 1879-1888.

    Fang Keyan, Chen Qiuyan, Liu Changzhi, et al. Research advances in dendrochronology[J]. Chinese Journal of Applied Ecology, 2014, 25(7): 1879-1888.

    [13]

    李彩娟, 陈拓, 王波, 等. 树轮异常结构的研究进展[J]. 生态学杂志, 2019, 38(5): 1538-1550.

    Li Caijuan, Chen Tuo, Wang Bo, et al. Advances in research on the abnormal structure of tree-rings[J]. Chinese Journal of Ecology, 2019, 38(5): 1538-1550.

    [14]

    Büntgen U, Arseneault D, Boucher É, et al. Prominent role of volcanism in Common Era climate variability and human history[J]. Dendrochronologia, 2020, 64: 125757. https://doi.org/10.1016/j.dendro.2020.125757. doi: 10.1016/j.dendro.2020.125757

    [15]

    Guillet S, Corona C, Stoffel M, et al. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records[J]. Nature Geoscience, 2017, 10(2): 123-128. doi: 10.1038/ngeo2875

    [16]

    Yin H, Li M Y, Huang L. Summer mean temperature reconstruction based on tree-ring density over the past 440 years on the eastern Tibetan Plateau[J]. Quaternary International, 2020, https://doi.org/10.1016/j.quaint.2020.09.018. doi: 10.1016/j.quaint.2020.09.018

    [17]

    Huang R, Zhu H, Liang E, et al. A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau since 1340 CE[J]. Climate Dynamics, 2019, 53(5-6): 3221-3233. doi: 10.1007/s00382-019-04695-3

    [18]

    Sun C, Liu Y, Song H, et al. Sunshine duration reconstruction in the southeastern Tibetan Plateau based on tree-ring width and its relationship to volcanic eruptions[J]. Science of the Total Environment, 2018, 628-629: 707-714. https://doi.org/10.1016/j.scitotenv.2018.02.078. doi: 10.1016/j.scitotenv.2018.02.078

    [19]

    Zhang R, Yuan Y, Wei W, et al. Dendroclimatic reconstruction of autumn-winter mean minimum temperature in the eastern Tibetan Plateau since 1600 AD[J]. Dendrochronologia, 2015, 33: 1-7. https://doi.org/10.1016/j.dendro.2014.09.001. doi: 10.1016/j.dendro.2014.09.001

    [20]

    Liang E, Dawadi B, Pederson N, et al. Strong link between large tropical volcanic eruptions and severe droughts prior to monsoon in the central Himalayas revealed by tree-ring records[J]. Science Bulletin, 2019, 64(14): 1018-1023. doi: 10.1016/j.scib.2019.05.002

    [21]

    汤秋鸿, 刘星才, 周园园, 等. " 亚洲水塔"变化对下游水资源的连锁效应[J]. 中国科学院院刊, 2019, 34(11): 1306-1312.

    Tang Qiuhong, Liu Xingcai, Zhou Yuanyuan, et al. Cascading impacts of Asian Water Tower change on downstream water systems[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1306-1312.

    [22]

    方克艳, 杨保, 郑怀舟, 等. 树轮学研究方法及其在全球变化中的应用[J]. 第四纪研究, 2015, 35(5): 1283-1293.

    Fang Keyan, Yang Bao, Zheng Huaizhou, et al. Applying tree-ring methods in the global changes studies[J]. Quaternary Sciences, 2015, 35(5): 1283-1293.

    [23]

    Bǎlut M, Dinulicǎ F, Medrea I, et al. A powerful and promising tool used in the tree ring measurements[J]. Revista de Silviculturǎ Si Cinegeticǎ, 2016, 21(38): 27-30.

    [24]

    Holmes R L. Computer-assisted quality control in tree-ring dating and measurement[J]. Tree-ring Bulletin, 1983, 43(1): 69-78.

    [25]

    Cook E R. A Time Series Analysis Approach to Tree Ring Standardization[D]. Arizona: The Dissertation for the Doctoral Degree of the University of Arizona, 1985: 1-171.

    [26]

    Wigley T M L, Briffa K R, Jones P D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology[J]. Journal of Climate and Applied Meteorology, 1984, 23(2): 201-213. doi: 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

    [27]

    Fritts H C. Tree Rings and Climate[M]. New York: Academic Press, 1976: 1-567.

    [28]

    Schoennagel T, Veblen T T, Romme W H, et al. ENSO and PDO variability affect drought-induced fire occurrence in Rocky Mountain subalpine forests[J]. Ecological Applications, 2005, 15(6): 2000-2014. doi: 10.1890/04-1579

    [29]

    李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.

    Li Mingqi, Shao Xuemei. Study on the relationship between large volcanic eruptions and temperature variation based on Tree-ring data in the eastern Tibetan Plateau during the past millennium[J]. Advances in Earth Science, 2016, 31(6): 634-642.

    [30]

    He M, Yang B, Datsenko N M. A six hundred-year annual minimum temperature history for the central Tibetan Plateau derived from tree-ring width series[J]. Climate Dynamics, 2014, 43(3-4): 641-655. doi: 10.1007/s00382-013-1882-x

    [31]

    Cai Q, Liu Y, Wang Y, et al. Recent warming evidence inferred from a tree-ring-based winter-half year minimum temperature reconstruction in northwestern Yichang, South Central China, and its relation to the large-scale circulation anomalies[J]. International Journal of Biometeorology, 2016, 60(12): 1885-1896. doi: 10.1007/s00484-016-1175-2

    [32]

    Wang J, Yang B, Qin C, et al. Tree-ring inferred annual mean temperature variations on the southeastern Tibetan Plateau during the last millennium and their relationships with the Atlantic Multidecadal Oscillation[J]. Climate Dynamics, 2014, 43(3-4): 627-640. doi: 10.1007/s00382-013-1802-0

    [33]

    Gennaretti F, Arseneault D, Nicault A, et al. Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10077-10082. doi: 10.1073/pnas.1324220111

    [34]

    Campbell B M S. Global climates, the 1257 Mega-eruption of Samalas Volcano, Indonesia, and the English food crisis of 1258[J]. Transactions of the Royal Historical Society, 2017, 27: 87-121. https://doi.org/10.1017/S0080440117000056. doi: 10.1017/S0080440117000056

    [35]

    Stoffel M, Khodri M, Corona C, et al. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1, 500 years[J]. Nature Geoscience, 2015, 8(10): 784-788. doi: 10.1038/ngeo2526

    [36]

    费杰. 公元1600年秘鲁Huaynaputina火山喷发在中国的气候效应[J]. 灾害学, 2008, 23(2): 65-70.

    Fei Jie. The possible climate impact of the A. D. 1600 Huaynaputina eruption, Peru to China[J]. Journal of Catastrophology, 2008, 23(2): 65-70.

    [37]

    费杰, 张志辉. 公元1600年秘鲁Huaynaputina火山喷发与长江中下游地区的气候异常[J]. 长江流域资源与环境, 2008, 17(4): 147-152.

    Fei Jie, Zhang Zhihui. The AD 1600 Huaynaputina Eruption (Peru) and climatic anomalies in the middle and lower reaches of the Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2008, 17(4): 147-152.

    [38]

    Bräuning A. Dendrochronology for the last 1400 years in eastern Tibet[J]. GeoJournal, 1994, 34(1): 75-95. doi: 10.1007/BF00813972

    [39]

    Ge Q, Zheng J, Fang X, et al. Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2000 years[J]. The Holocene, 2003, 13(6): 933-940.

    [40]

    杨煜达, 满志敏, 郑景云. 嘉庆云南大饥荒(1815-1817)与坦博拉火山喷发[J]. 复旦学报(社会科学版), 2005, (1): 79-85. doi: 10.3969/j.issn.0257-0289.2005.01.011

    Yang Yuda, Man Zhimin, Zheng Jingyun. A serious famine in Yunnan(1815-1817) and the eruption of Tambora Volcano[J]. Fudan Journal(Social Sciences Edition), 2005, (1): 79-85. doi: 10.3969/j.issn.0257-0289.2005.01.011

    [41]

    Thompson L G, Yao T, Mosley-Thompson E, et al. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores[J]. Science, 2000, 289(5486): 1916-1919. doi: 10.1126/science.289.5486.1916

    [42]

    Shah S K, Bhattacharyya A, Chaudhary V. Streamflow reconstruction of Eastern Himalaya River, Lachen 'Chhu', North Sikkim, based on tree-ring data of Larix griffithiana from Zemu Glacier basin[J]. Dendrochronologia, 2014, 32(2): 97-106. doi: 10.1016/j.dendro.2014.01.005

    [43]

    Chen F, Shang H, Panyushkina I, et al. 500-year tree-ring reconstruction of Salween River streamflow related to the history of water supply in Southeast Asia[J]. Climate Dynamics, 2019, 53(11): 6595-6607. doi: 10.1007/s00382-019-04948-1

    [44]

    Wu C C, Shen C C, Lo L, et al. Pinatubo volcanic eruption exacerbated an abrupt coral mortality event in 1991 summer[J]. Geophysical Research Letters, 2018, 45(22): 12396-12402. doi: 10.1029/2018GL079529

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(470) PDF downloads(28) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint