2021 Vol. 41, No. 2
Article Contents

ZHENG Jingyun, LIU Yang, HAO Zhixin, GE Quansheng. State-of-art and perspective on global synthesis studies of climate change for the past 2000 years[J]. Quaternary Sciences, 2021, 41(2): 309-322. doi: 10.11928/j.issn.1001-7410.2021.02.01
Citation: ZHENG Jingyun, LIU Yang, HAO Zhixin, GE Quansheng. State-of-art and perspective on global synthesis studies of climate change for the past 2000 years[J]. Quaternary Sciences, 2021, 41(2): 309-322. doi: 10.11928/j.issn.1001-7410.2021.02.01

State-of-art and perspective on global synthesis studies of climate change for the past 2000 years

  • Fund Project:


More Information
  • The past 2000 years is a highlighted interval of the PAGES(Past Global Changes) project and PAGES initiates the 2k Network(PAGES2k) to coordinate and integrate studies over the world. This paper summarizes the recent advances, prospects and challenges about temperature and hydroclimate changes during the past 2000 years based on literatures related with PAGES2k. The results are as follows: (1) Although pronounced difference is shown for the amplitude of temperature changes over the past two millennia among the reconstructions of global mean surface temperature(GMST) produced by the different methods, all reconstructions show that the GMST during first millennium of the Common Era was warmer than that during the second millennium(except for the 20th century). All reconstructions show a significant cooling trend before 1850 A.D., followed by rapid industrial-era warming. The warmest 10-year, 30-year and 50-year period of the past two millennia falls within the second half of the twentieth century. (2) The synthesis reconstruction for global hydroclimate is still at the initial stage. Although the proxy data for global hydroclimatic reconstructions over the Common Era was compiled and the first gridded hydroclimate dataset covering the global land area was presented, there existed uncertainties in the results mainly due to the lack of long-term and spatially resolved proxies. (3) The tree ring with annual resolution is a major proxy for current reconstructions, while other proxies with lower resolution are not well fused in the global synthesis so far. Based on the data stewardship, PAGES2k will synthesize the proxies derived from land, oceans and societies for further studies focused on the themes of proxy and model understanding, methods and uncertainties, and climate variability, modes and mechanisms. The major challenges include the interpretation of spatiotemporal difference for the significance of climate proxies, dating and cross-validation of multiple proxies, proxy data mining, and methods for proxy data assemble, calibration and assimilation.

  • 加载中
  • [1]

    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working GroupⅠto the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 383-464.


    Subramanian M. Humans versus Earth: The quest to define the Anthropocene[J]. Nature, 2019, 572(7768): 168-171. doi: 10.1038/d41586-019-02381-2


    Hamilton C. Define the Anthropocene in terms of the whole Earth[J]. Nature, 2016, 536(7616): 251-251. doi: 10.1038/536251a


    Monastersky R. Anthropocene: The human age[J]. Nature, 2015, 519(7542): 144-147. doi: 10.1038/519144a


    Eddy J A. Past Global Changes Project: Proposed Implementation Plans for Research Activities[R]//Global Change Report No. 19. Stockholm, Sweden: IGBP, 1992: 1-112.


    PAGES. Science Plan and Implementation Strategy(IGBP Report No. 57)[R]. Stockholm, Sweden: IGBP Secretariat, 2009: 1-67.


    Alverson K, Bradley R S, Pedersen T F. Paleoclimate, Global Change and the Future[M]. Berlin, Germany: Springer Verlag, 2003: 1-220.


    Turney C S M, McGregor H V, Francus P, et al. Introduction to the special issue on climate of the past 2000 years: Global and regional syntheses[J]. Climate of the Past, 2019, 15(2): 611-615. doi: 10.5194/cp-15-611-2019


    Linderholm H W, Nicolle M, Francus P, et al. Arctic hydroclimate variability during the last 2000 years: Current understanding and research challenges[J]. Climate of the Past, 2018, 14(4): 473-514. doi: 10.5194/cp-14-473-2018


    Luterbacher J, Werner J P, Smerdon J E, et al. European summer temperatures since Roman times[J]. Environmental Research Letters, 2016, 11(2): 024001. doi:10.1088/1748-9326/11/2/024001.


    Seftigen K, Goosse H, Klein F, et al. Hydroclimate variability in Scandinavia over the last millennium-Insights from a climate model-proxy data comparison[J]. Climate of the Past, 2017, 13(12): 1831-1850. doi: 10.5194/cp-13-1831-2017


    Trouet V, Diaz H F, Wahl E R, et al. A 1500-year reconstruction of annual mean temperature for temperate North America on decadal-to-multidecadal time scales[J]. Environmental Research Letters, 2013, 8(2): 024008. doi:10.1088/1748-9326/8/2/024008.


    Jaume-Santero F, Pickler C, Beltrami H. North American regional climate reconstruction from ground surface temperature histories[J]. Climate of the Past, 2016, 12(12): 2181-2194. doi: 10.5194/cp-12-2181-2016


    Shuman B N, Routson C, McKay N, et al. Placing the Common Era in a Holocene context: Millennial to centennial patterns and trends in the hydroclimate of North America over the past 2000 years[J]. Climate of the Past, 2018, 14(5): 665-686. doi: 10.5194/cp-14-665-2018


    Cook E R, Krusic P J, Anchukaitis K J, et al. Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 CE[J]. Climate Dynamics, 2013, 41(11-12): 2957-2972. doi: 10.1007/s00382-012-1611-x


    Shi F, Ge Q S, Yang B, et al. A multi-proxy reconstruction of spatial and temporal variations in Asian summer temperatures over the last millennium[J]. Climatic Change, 2015, 131(4): 663-676. doi: 10.1007/s10584-015-1413-3


    葛全胜, 郑景云, 郝志新. 过去2000年亚洲气候变化(PAGES-Asia2k)集成研究进展及展望[J]. 地理学报, 2015, 70(3): 355-363.

    Ge Quansheng, Zheng Jingyun, Hao Zhixin. PAGES synthesis study on climate changes in Asia over the last 2000 years: Progresses and perspectives[J]. Acta Geographica Sinica, 2015, 70(3): 355-363.


    Ge Q S, Liu H L, Ma X, et al. Characteristics of temperature change in China over the last 2000 years and spatial patterns of dryness/wetness during cold and warm periods[J]. Advances in Atmospheric Sciences, 2017, 34(8): 941-951. doi: 10.1007/s00376-017-6238-8


    Chen J H, Chen F H, Feng S, et al. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms[J]. Quaternary Science Reviews, 2015, 107: 98-111.10.1016/j. quascirev. 2014.10.012. doi: 10.1016/j.quascirev.2014.10.012


    Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3-4): 351-364. doi: 10.1016/j.quascirev.2007.10.017


    Dixon B C, Tyler J J, Lorrey A M, et al. Low-resolution Australasian palaeoclimate records of the last 2000 years[J]. Climate of the Past, 2017, 13(10): 1403-1433. doi: 10.5194/cp-13-1403-2017


    Gergis J, Neukom R, Gallant A J E, et al. Australasian temperature reconstructions spanning the last millennium[J]. Journal of Climate, 2016, 29(15): 5365-5392. doi: 10.1175/JCLI-D-13-00781.1


    Freund M, Henley B J, Karoly D J, et al. Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions[J]. Climate of the Past, 2017, 13(12): 1751-1770. doi: 10.5194/cp-13-1751-2017


    Stenni B, Curran M A J, Abram N, et al. Antarctic climate variability on regional and continental scales over the last 2000 years[J]. Climate of the Past, 2017, 13(11): 1609-1634. doi: 10.5194/cp-13-1609-2017


    Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354. doi:10.1016/j.earscirev.2019.03.005.


    Hao Z X, Zheng J Y, Yu Y Z, et al. Climatic changes during the past two millennia along the Ancient Silk Road[J]. Progress in Physical Geography, 2020, 44(5): 605-623. doi: 10.1177/0309133319893919


    Nicolle M, Debret M, Massei N, et al. Climate variability in the subarctic area for the last 2 millennia[J]. Climate of the Past, 2018, 14(1): 101-116. doi: 10.5194/cp-14-101-2018


    Franke J G, Werner J P, Donner R V. Reconstructing Late Holocene North Atlantic atmospheric circulation changes using functional paleoclimate networks[J]. Climate of the Past, 2017, 13(11): 1593-1608. doi: 10.5194/cp-13-1593-2017


    Neukom R, Gergis J, Karoly D J, et al. Inter-hemispheric temperature variability over the past millennium[J]. Nature Climate Change, 2014, 4(5): 362-367. doi: 10.1038/nclimate2174


    PAGES2K Consortium. Continental-scale temperature variability during the past two millennia[J]. Nature Geoscience, 2013, 6(5): 339-346. doi: 10.1038/ngeo1797


    PAGES2K Consortium. Corrigendum: Continental-scale temperature variability during the past two millennia[J]. Nature Geoscience, 2015, 8(12): 981-982.


    Guillet S, Corona C, Stoffel M, et al. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records[J]. Nature Geoscience, 2017, 10(2): 123-128. doi: 10.1038/ngeo2875


    Stoffel M, Khodri M, Corona C, et al. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1500 years[J]. Nature Geoscience, 2015, 8(10): 784-788. doi: 10.1038/ngeo2526


    Wilson R, Anchukaitis K, Briffa K R, et al. Last millennium northern hemisphere summer temperatures from tree rings: PartⅠ: The long term context[J]. Quaternary Science Reviews, 2016, 134: 1-18. doi:10.1016/j.quascirev.2015.12.005.


    Schneider L, Smerdon J E, Büntgen U, et al. Revising midlatitude summer temperatures back to AD 600 based on a wood density network[J]. Geophysical Research Letters, 2015, 42(11): 4556-4562. doi: 10.1002/2015GL063956


    史锋, 杨保, 冯娟, 等. 利用树轮资料集成重建的过去2000年北半球年平均温度变化[J]. 第四纪研究, 2015, 35(5): 1051-1063.

    Shi Feng, Yang Bao, Feng Juan, et al. Reconstruction of the Northern Hemisphere annual temperature change over the Common Era derived from tree rings[J]. Quaternary Sciences, 2015, 35(5): 1051-1063.


    Wang J L, Yang B, Zheng J Y, et al. Evaluation of multidecadal and longer-term temperature changes since 850 CE based on Northern Hemisphere proxy-based reconstructions and model simulations[J]. Science China: Earth Sciences, 2020, 63(8): 1126-1143. doi: 10.1007/s11430-019-9607-x


    Esper J, George S S, Anchukaitis K, et al. Largescale, millennial-length temperature reconstructions from tree-rings[J]. Dendrochronologia, 2018, 50: 81-90. doi:10.1016/j.dendro.2018.06.001.


    Ljungqvist F C, Zhang Q, Brattstrom G, et al. Centennial-scale temperature change in last millennium simulations and proxy-based reconstructions[J]. Journal of Climate, 2019, 32(9): 2441-2482. doi: 10.1175/JCLI-D-18-0525.1


    PAGES2K Consortium. A global multiproxy database for temperature reconstructions of the Common Era[J]. Scientific Data, 2017, 4: 170088. doi:10.1038/sdata.2017.88.


    PAGES2K Consortium. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era[J]. Nature Geoscience, 2019, 12(8): 643-649. doi: 10.1038/s41561-019-0400-0


    Shi F, Zhao S, Guo Z, et al. Multi-proxy reconstructions of May-September precipitation field in China over the past 500 years[J]. Climate of the Past, 2017, 13(12): 1919-1938. doi: 10.5194/cp-13-1919-2017


    Mann M E, Zhang Z H, Hughes M K, et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(36): 13252-13257. doi: 10.1073/pnas.0805721105


    Barboza L, Li B, Tingley M P, et al. Reconstructing past temperatures from natural proxies and estimated climate forcings using short- and long-memory models[J]. The Annals of Applied Statistics, 2014, 8(4): 1966-2001.


    Hakim G J, Emile-Geay J, Steig E J, et al. The last millennium climate reanalysis project: Framework and first results[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(12): 6745-6764. doi: 10.1002/2016JD024751


    Lamb H H. Climate: Present, Past and Future. Vol. 2: Climatic History and the Future[M]. London, United Kingdom: Methuen, 1977: 1-837.


    Ljungqvist F C. A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia[J]. Geografiska Annaler: Series A, Physical Geography, 2010, 92(3): 339-351. doi: 10.1111/j.1468-0459.2010.00399.x


    Christiansen B, Ljungqvist F C. Challenges and perspectives for large-scale temperature reconstructions of the past two millennia[J]. Reviews of Geophysics, 2017, 55(1): 40-96. doi: 10.1002/2016RG000521


    Neukom R, Steiger N, Gomez-Navarro J J, et al. No evidence for globally coherent warm and cold periods over the preindustrial Common Era[J]. Nature, 2019, 571(7766): 550-554. doi: 10.1038/s41586-019-1401-2


    中央气象局气象科学研究院. 中国近五百年旱涝分布图集[M]. 北京: 地图出版社, 1981: 1-274.

    Chinese Academy of Meteorological Sciences, China Meteorological Administration. Yearly Charts of Dryness/Wetness in China for the Last 500-Year Period[M]. Beijing: SinoMaps Press, 1981: 1-274.


    张丕远. 中国历史气候变化[M]. 济南: 山东科学技术出版社, 1996: 200-204.

    Zhang Piyuan. Climate Change in China during Historical Times[M]. Jinan: Shandong Science and Technology Press, 1996: 200-204.


    Cook E R, Woodhouse C A, Eakin C M, et al. Long-term aridity changes in the Western United States[J]. Science, 2004, 306(5698): 1015-1018. doi: 10.1126/science.1102586


    Cook E R, Seager R, Kushnir Y, et al. Old World megadroughts and pluvials during the Common Era[J]. Science Advances, 2015, 1(10): e1500561. doi:10.1126/sciadv.1500561.


    Cook E R, Anchukaitis K J, Buckley B M, et al. Asian monsoon failure and megadrought during the last millennium[J]. Science, 2010, 328(5977): 486-489. doi: 10.1126/science.1185188


    Yang F M, Shi F, Kang S Y, et al. Comparison of the dryness/wetness index in China with the monsoon Asia drought atlas[J]. Theoretical and Applied Climatology, 2013, 114(3-4): 553-566. doi: 10.1007/s00704-013-0858-4


    Pauling A, Luterbacher J, Casty C, et al. Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation[J]. Climate Dynamics, 2006, 26(4): 387-405. doi: 10.1007/s00382-005-0090-8


    Feng S, Hu Q, Wu Q R, et al. A gridded reconstruction of warm season precipitation for Asia spanning the past half millennium[J]. Journal of Climate, 2013, 26(7): 2192-2204. doi: 10.1175/JCLI-D-12-00099.1


    Shi H, Wang B, Cook E R, et al. Asian summer precipitation over the past 544 years reconstructed by merging tree rings and historical documentary records[J]. Journal of Climate, 2018, 31(19): 7845-7861. doi: 10.1175/JCLI-D-18-0003.1


    Ljungqvist F C, Krusic P J, Sundqvist H S, et al. Northern Hemisphere hydroclimate variability over the past twelve centuries[J]. Nature, 2016, 532(7597): 94-98. doi: 10.1038/nature17418


    PAGES Hydro 2k Consortium. Comparing proxy and model estimates of hydroclimate variability and change over the Common Era[J]. Climate of the Past, 2017, 13(12): 1851-1900. doi: 10.5194/cp-13-1851-2017


    Steiger N J, Smerdon J E, Cook E R, et al. A reconstruction of global hydroclimate and dynamical variables over the Common Era[J]. Scientific Data, 2018, 5: 180086. doi:10.1086/sdata.2018.86.


    杨保, 王鑫, 宋苗, 等. 过去2000年温度集成重建研究: 进展与展望[J]. 第四纪研究, 2017, 37(5): 945-962.

    Yang Bao, Wang Xin, Song Miao, et al. Temperature reconstructions of last millennium and common era climate variations: Present status and future prospects[J]. Quaternary Sciences, 2017, 37(5): 945-962.


    王健, 程海, 赵景耀, 等. 小冰期多尺度气候波动: 贵州董哥洞高分辨率石笋记录[J]. 第四纪研究, 2019, 39(3): 775-785.

    Wang Jian, Cheng Hai, Zhao Jingyao, et al. Climate variability during the Little Ice Age characterized by a high resolution stalagmite record from Dongge Cave, Guizhou[J]. Quaternary Sciences, 2019, 39(3): 775-785.


    NRC (National Research Council of the National Academy of Sciences). Surface Temperature Reconstructions for the Last 2000 Years[M]. Washington DC, USA: The National Academies Press, 2006: 1-145.


    IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working GroupⅠto the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007: 466-482.


    赵华标, 徐柏青, 王宁练. 青藏高原冰芯稳定氧同位素记录的温度代用性研究[J]. 第四纪研究, 2014, 34(6): 1215-1226.

    Zhao Huabiao, Xu Baiqing, Wang Ninglian. Study on the water stable isotopes in Tibetan Plateau ice cores as a proxy of temperature[J]. Quaternary Sciences, 2014, 34(6): 1215-1226.


    李廷勇. 伪雨量效应——一个同位素气候学问题的讨论[J]. 第四纪研究, 2018, 38(6): 1545-1548.

    Li Tingyong. False amount effect-A discussion on one issue of isotopes climatology[J]. Quaternary Sciences, 2018, 38(6): 1545-1548.


    Dee S G, Steiger N J, Emile-Geay J. On the utility of proxy system models for estimating climate states over the Common Era[J]. Journal of Advances in Modeling Earth Systems, 2016, 8(3): 1164-1179. doi: 10.1002/2016MS000677


    Wahl E R, Smerdon J E. Comparative performance of paleoclimate field and index reconstructions derived from climate proxies and noise-only predictors[J]. Geophysical Research Letters, 2012, 39(6): L06703. doi:10.1029/2012GL051086.


    储国强, 顾兆炎, 许冰, 等. 东北四海龙湾玛珥湖沉积物纹层计年与137Cs、210Pb测年[J]. 第四纪研究, 2005, 25(2): 202-207. doi: 10.3321/j.issn:1001-7410.2005.02.010

    Chu Guoqiang, Gu Zhaoyan, Xu Bing, et al. Varvechronology and radiometric dating (137Cs, 210Pb) from the Sihailongwan Maar, Northeastern China[J]. Quaternary Sciences, 2005, 25(2): 202-207. doi: 10.3321/j.issn:1001-7410.2005.02.010


    谭明, 侯居峙, 程海. 定量重建气候历史的石笋年层方法[J]. 第四纪研究, 2002, 22(3): 209-219. doi: 10.3321/j.issn:1001-7410.2002.03.003

    Tan Ming, Hou Juzhi, Cheng Hai. Methodology of quantitatively reconstructing paleoclimate from annualy laminated stalagmites[J]. Quaternary Sciences, 2002, 22(3): 209-219. doi: 10.3321/j.issn:1001-7410.2002.03.003


    陶士臣, 张会领, 余克服, 等. 近500年西沙群岛海面温度年际变化的珊瑚记录及其环境意义[J]. 第四纪研究, 2021, 41(2): 411-423.

    Tao Shichen, Zhang Huiling, Yu Kefu, et al. Annual resolution sea surface temperature reconstructed quantitatively by Porites coral growth rate in the Xishaqundao Islands during the past five centuries and the environmental significance[J]. Quaternary Sciences, 2021, 41(2): 411-423.


    王学锋, 段武辉, 周文龙, 等. 贵州潜龙洞"零岁碳酸钙"铀系年代学及其意义[J]. 第四纪研究, 2019, 39(5): 1320-1322.

    Wang Xuefeng, Duan Wuhui, Zhou Wenlong, et al. U-series chronology and its significance for "zero-year-old calcium carbonate" in Qianlong Cave, Guizhou Province[J]. Quaternary Sciences, 2019, 39(5): 1320-1322.


    刘志杰, 余佳, 孙晓燕, 等. 海洋沉积物14C测年数据整合与校正问题探讨[J]. 第四纪研究, 2016, 36(2): 492-502.

    Liu Zhijie, Yu Jia, Sun Xiaoyan, et al. A discussion of marine sediments 14C data integration and correction[J]. Quaternary Sciences, 2016, 36(2): 492-502.


    Ljungqvist F C, Seim A, Huhtamaa H. Climate and society in European history[J]. WIREs Climate Change, 2020, e691. doi:10.1002/wcc.691.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索



Article Metrics

Article views(912) PDF downloads(194) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint