2021 Vol. 41, No. 1
Article Contents

LU Jiaxin, YAO Yuan, ZHU Zeyang, SUN Chunqing, WU Jing, LIU Jiaqi. Relationship between brGDGTs-based temperatures and volcanism record in the recent 300 years in Arxan region[J]. Quaternary Sciences, 2021, 41(1): 88-98. doi: 10.11928/j.issn.1001-7410.2021.01.08
Citation: LU Jiaxin, YAO Yuan, ZHU Zeyang, SUN Chunqing, WU Jing, LIU Jiaqi. Relationship between brGDGTs-based temperatures and volcanism record in the recent 300 years in Arxan region[J]. Quaternary Sciences, 2021, 41(1): 88-98. doi: 10.11928/j.issn.1001-7410.2021.01.08

Relationship between brGDGTs-based temperatures and volcanism record in the recent 300 years in Arxan region

More Information
  • Volcanism is considered to be the most important factor affecting global temperature changes on centennial/millennial time scale. The study on this issue has made considerable progress in the past 40 years, attributes to the appearance of long-term volcanic eruption records reconstructed by the sulfate concentration from polar ice cores. Although there is a good correspondence between large-scale volcanic eruptions and regional cooling events, the systemic correlation between the growth season temperature changes reconstructed from the tree-ring records from low-and mid-latitude regions and the volcanic eruption records are relatively poor. The reason may be that the growth of tree rings in low-and mid-latitude regions is affected by a variety of factors such as temperature, rainfall, and photosynthesis, resulting in deviations of the temperature reconstruction for growth season. Therefore, new quantitative temperature reconstruction indicator in mid- and high-latitude regions is expected to explore the impact of volcanic eruptions on regional temperature changes. In order to solve this problem, the new biomarker indicator widely branched glycerol dialkyl glycerol tetraether lipids(brGDGTs), which is abundant in lacustrine sediments, has been used in quantitative past temperature reconstruction. In recent years, with the continuous maturity of GDGTs analysis technology and quantitative reconstruction calibration methods, it has become possible to quantitatively reconstruct regional summer temperature changes using MBT and CBT in lacustrine sediments.

    In this study, a 85 cm-long gravity core was drilled in the central part of Luming Lake(47°24'N, 120°30'E; 1179 m a.s.l.), NE China. The second half was sub-sampled at 1 cm intervals and these samples were freeze-dried, and 1~7 g was collected to analyze the GDGTs. The chronology was based on the 22 210Pb/137Cs dates and 1 AMS 14C dates. This study presented an independent growth temperature(May-September) record based on brGDGTs during the last 300 years from Luming Lake, Arxan region, Northeast China. The results show that the average growth season temperature in the study area is ca. 13.8 ℃ in the past 300 years, and the range is ca. 3.0 ℃. From the 18th century to the beginning of the 20th century, the growth season temperature in study area showed a fluctuating trend. From the beginning of the 20th century to the 1990s, it continues to drop from about 14.0 ℃ to 12.0 ℃, which indicates that the cooling responds well to the increasing frequency of large-scale volcanic eruptions. After the 1990s, it shows an obvious warming trend. The results of the correlation analysis show that the frequency of the large-scale volcanic eruptions has a good correlation with the growth season temperature changes in Arxan area in the past 300 years. Volcanism is an important control factor for the growth season temperature changes on centennial time scale in study area.

  • 加载中
  • [1]

    Kobashi T, Menviel L, Jeltsch-Thömmes A, et al. Volcanic influence on centennial to millennial Holocene Greenland temperature change[J]. Scientific Reports, 2017, 7 (1):1441. doi: 10.1038/s41598-017-01451-7

    [2]

    Hammer C U, Clausen H B, Langway C C. 50, 000 years of recorded global volcanism[J]. Climatic Change, 1997, 35 (1):1-15. doi: 10.1023/A:1005344225434

    [3]

    Hammer C U. Acidity of polar ice cores in relation to absolute dating, past volcanism, and radio-echoes[J]. Journal of Glaciology, 1980, 25 (93):359-372. doi: 10.1017/S0022143000015227

    [4]

    Hammer C U, Clausen H B, Dansgaard W. Greenland ice sheet evidence of post-glacial volcanism and its climatic impact[J]. Nature, 1980, 288 (5788):230-235. doi: 10.1038/288230a0

    [5]

    Hammer C U. Past volcanism revealed by Greenland ice sheet impurities[J]. Nature, 1977, 270 (5637):482-486. doi: 10.1038/270482a0

    [6]

    Gao C, Alan Robock, Ammann C. Volcanic forcing of climate over the past 1500 years: An improved ice-core-based index for climate models[J]. 2008, 113 (23): 1-15.

    [7]

    Zielinski G A, Mayewski P A, Meeker L D, et al. Record of volcanism since 7000 B. C.from the GISP2 Greenland ice core and implications for the volcano-climate system[J]. Science, 1994, 264 (5161):948-952. doi: 10.1126/science.264.5161.948

    [8]

    Lamarche V C, Hirschboeck K K. Frost rings in trees as records of major volcanic eruptions[J]. Nature, 1984, 307 (5947):121-126. doi: 10.1038/307121a0

    [9]

    D'Arrigo R D, Jacoby G C. Northern North American tree-ring evidence for regional temperature changes after major volcanic events[J]. Climatic Change, 1999, 41 (1):1-15. doi: 10.1023/A:1005370210796

    [10]

    Luckman B H, Wilson R J S. Summer temperatures in the Canadian Rockies during the last millennium:A revised record[J]. Climate Dynamics, 2005, 24 (2-3):131-144. doi: 10.1007/s00382-004-0511-0

    [11]

    Lough J M, Fritts H C. An assessment of the possible effects of volcanic eruptions on North American climate using tree-ring data, 1602 to 1900 A.D.[J]. Climatic Change, 1987, 10 (3):219-239. doi: 10.1007/BF00143903

    [12]

    Chen F, Yuan Y J, Wei W S, et al. Tree ring-based winter temperature reconstruction for Changting, Fujian, subtropical region of Southeast China, since 1850:Linkages to the Pacific Ocean[J]. Theoretical & Applied Climatology, 2012, 109 (1-2):141-151. doi: 10.1007/s00704-011-0563-0

    [13]

    Gervais B R, Macdonald G M. Tree-ring and summer-temperature response to volcanic aerosol forcing at the northern tree-line, Kola Peninsula, Russia[J]. The Holocene, 2001, 11 (4):499-505. doi: 10.1191/095968301678302940

    [14]

    Dong X, Zhou X J, Ping Z. Numerical simulation study of temperature change over East China in the past millennium[J]. Science China: Earth Sciences, 2012, 55 (9):118-131. doi: 10.1007/s11430-012-4422-3

    [15]

    Chen F, Yuan Y J, Wei W S, et al. Temperature reconstruction from tree-ring maximum latewood density of Qinghai spruce in middle Hexi Corridor, China[J]. Theoretical & Applied Climatology, 2012, 107 (3-4):633-643. doi: 10.1007/s00704-011-0512-y

    [16]

    Cole-Dai J. Volcanoes and climate[J]. Wiley Interdisciplinary Reviews:Climate Change, 2010, 1 (6):824-839. doi: 10.1002/wcc.76

    [17]

    Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. 13, 16-Dimethyl octacosanedioic acid(iso-diabolic acid), a common membrane-spanning lipid of Acidobacteria Subdivisions 1 and 3[J]. Applied and Environmental Microbiology, 2011, 77 (12):4147-4154. doi: 10.1128/AEM.00466-11

    [18]

    Sinninghe Damsté J S, Rijpstra W I C, Foesel B U, et al. An overview of the occurrence of ether-and ester-linked iso-diabolic acid membrane lipids in microbial cultures of the Acidobacteria:Implications for brGDGT paleoproxies for temperature and pH[J]. Organic Geochemistry, 2018, 124:63-76. doi:10.1016/j.orggeochem.2018.07.006.

    [19]

    张佳皓, 黄钰莹, 王灿发, 等.湖北清江和尚洞石笋GDGTs来源: 5、6-甲基支链GDGTs和brGMGTs新证据[J].第四纪研究, 2020, 40 (4):992-1007.

    Zhang Jiahao, Huang Yuying, Wang Canfa, et al. Sources of GDGTs in stalagmites from Heshang Cave, Hubei Province in Central China:New evidence from 5, 6-methyl brGDGTs and brGMGTs[J]. Quaternary Sciences, 2020, 40 (4):992-1007.

    [20]

    郭海超, 陈炽皓, 白艳, 等. GDGTs揭示的西宁盆地中中新世环境变化[J].第四纪研究, 2018, 38 (1):97-106.

    Guo Haichao, Chen Chihao, Bai Yan, et al. Paleoenvironmental evolution of the Xining Basin, NE Tibetan Plateau during mid-Miocene:Revealed by GDGTs[J]. Quaternary Sciences, 2018, 38 (1):97-106.

    [21]

    李婧婧, 杨欢, 高超, 等.羟基甘油二烷基甘油四醚脂类化合物研究进展[J].第四纪研究, 2018, 38 (6):1462-1470.

    Li Jingjing, Yang Huan, Gao Chao, et al. Application of hydroxylated glycerol dialky glycerol tetraethers:A review[J]. Quaternary Sciences, 2018, 38 (6):1462-1470.

    [22]

    Sinninghe Damste J S, Hopmans E C, Pancost R D, et al. Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments[J]. Chemical Communications, Royal Society of Chemistry, 2000, (17):1683-1684. https://doi.org/10.1039/B004517I. doi: 10.1002/chin.200048230

    [23]

    Weijers J W H, Schouten S, Van Den Donker J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta, 2007, 71 (3):703-713. doi: 10.1016/j.gca.2006.10.003

    [24]

    Tierney J E, Russell J M, Eggermont H, et al. Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments[J]. Geochimica et Cosmochimica Acta, 2010, 74 (17):4902-4918. doi: 10.1016/j.gca.2010.06.002

    [25]

    Zink K G, Vandergoes M J, Mangelsdorf K, et al. Application of bacterial glycerol dialkyl glycerol tetraethers(GDGTs)to develop modern and past temperature estimates from New Zealand lakes[J]. Organic Geochemistry, 2010, 41 (9), 1060-1066. doi: 10.1016/j.orggeochem.2010.03.004

    [26]

    Zink K-G, Vandergoes M J, Bauersachs T, et al. A refined paleotemperature calibration for New Zealand limnic environments using differentiation of branched glycerol dialkyl glycerol tetraether(brGDGT)sources[J]. Journal of Quaternary Science, 2016, 31 (7):823-835. doi: 10.1002/jqs.2908

    [27]

    Sun Q, Chu G, Liu M, et al. Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal[J]. Journal of Geophysical Research, 2011, 116(G1):G01008. doi:10.1029/2010JG001365.

    [28]

    Russell J M, Hopmans E C, Loomis S E, et al. Distributions of 5-and 6-methyl branched glycerol dialkyl glycerol tetraethers(brGDGTs)in East African lake sediment:Effects of temperature, pH, and new lacustrine paleotemperature calibrations[J]. Organic Geochemistry, Pergamon, 2018, 117:56-69. doi:10.1016/j.orggeochem.2018.08.007.

    [29]

    Pearson E J, Juggins S, Talbot H M, et al. A lacustrine GDGT-temperature calibration from the Scandinavian Arctic to Antarctic:Renewed potential for the application of GDGT-paleothermometry in lakes[J]. Geochimica et Cosmochimica Acta, 2011, 75 (20):6225-6238. doi: 10.1016/j.gca.2011.07.042

    [30]

    Loomis S E, Russell J M, Ladd B, et al. Calibration and application of the branched GDGT temperature proxy on East African lake sediments[J]. Earth and Planetary Science Letters, 2012, 357-358:277-288. doi:10.1016/j.epsl.2012.09.031.

    [31]

    Foster L C, Pearson E J, Juggins S, et al. Development of a regional glycerol dialkyl glycerol tetraether(GDGT)-temperature calibration for Antarctic and sub-Antarctic lakes[J]. Earth and Planetary Science Letters, 2016, 433:370-379. doi:10.1016/j.epsl.2015.11.018.

    [32]

    Chu G, Sun Q, Zhu Q, et al. The role of the Asian winter monsoon in the rapid propagation of abrupt climate changes during the last deglaciation[J]. Quaternary Science Reviews, 2017, 177:120-129. doi:10.1016/j.quascirev.2017.10.014.

    [33]

    Miller D R, Habicht M H, Keisling B A, et al. A 900-year New England temperature reconstruction from in situ seasonally produced branched glycerol dialkyl glycerol tetraethers(brGDGTs)[J]. Climate of the Past, 2018, 14 (11):1653-1667. doi: 10.5194/cp-14-1653-2018

    [34]

    Martin C, Ménot G, Thouveny N, et al. Early Holocene Thermal Maximum recorded by branched tetraethers and pollen in Western Europe(Massif Central, France)[J]. Quaternary Science Reviews, 2020, 228:106109. doi:10.1016/j.quascirev.2019.106109.

    [35]

    Tian L, Wang M, Zhang X, et al. Synchronous change of temperature and moisture over the past 50 ka in subtropical Southwest China as indicated by biomarker records in a crater lake[J]. Quaternary Science Reviews, 2019, 212:121-134. doi:10.1016/j.quascirev.2019.04.003.

    [36]

    Feng X, Zhao C, D'Andrea W J, et al. Temperature fluctuations during the Common Era in subtropical Southwestern China inferred from brGDGTs in a remote alpine lake[J]. Earth and Planetary Science Letters, 2019, 510:26-36. doi:10.1016/j.epsl.2018.12.028.

    [37]

    De Jonge C, Hopmans E C, Stadnitskaia A, et al. Identification of novel penta-and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC-MS2, GC-MS and GC-SMB-MS[J]. Organic Geochemistry, 2013, 54:78-82. doi:10.1016/j.orggeochem.2012.10.004.

    [38]

    De Jonge C, Hopmans E C, Zell C I, et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils:Implications for palaeoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2014, 141:97-112. doi:10.1016/j.orggeochem.2012.10.004.

    [39]

    Dang X, Xue J, Yang H, et al. Environmental impacts on the distribution of microbial tetraether lipids in Chinese lakes with contrasting pH:Implications for lacustrine paleoenvironmental reconstructions[J]. Science China: Earth Sciences, 2016, 59 (5):939-950. doi: 10.1007/s11430-015-5234-z

    [40]

    Cronin T M, Dwyer G S, Kamiya T, et al. Medieval Warm Period, Little Ice Age and 20th century temperature variability from Chesapeake Bay[J]. Global and Planetary Change, 2003, 36 (1-2):17-29. doi: 10.1016/S0921-8181(02)00161-3

    [41]

    史锋, 杨保, 冯娟, 等.利用树轮资料集成重建的过去2000年北半球年平均温度变化[J].第四纪研究, 2015, 35 (5):1051-1063.

    Shi Feng, Yang Bao, Feng Juan, et al. Reconstruction of the northern hemisphere annual temperature change over the common era derived from tree rings[J]. Quaternary Sciences, 2015, 35 (5):1051-1063.

    [42]

    薛莲花, 赵侃, 崔英方, 等.近2000年来东亚夏季风突变的落水洞高分辨率石笋记录[J].第四纪研究, 2020, 40 (4):973-984.

    Xue Lianhua, Zhao Kan, Cui Yingfang, et al. Abrupt changes of East Asian summer monsoon over the past two millennia record in Luoshui Cave, Hubei Province[J]. Quaternary Sciences, 2020, 40 (4):973-984.

    [43]

    范保硕, 张文胜, 张茹春, 等.华北平原小冰期以来干湿变化与人类活动特征[J].第四纪研究, 2019, 39 (2):483-496.

    Fan Baoshuo, Zhang Wensheng, Zhang Ruchun, et al. Characteristics of dry-wet changes and human activities in the North China Plainsin the Little Ice Age[J]. Quaternary Sciences, 2019, 39 (2):483-496.

    [44]

    郑邦, 周斌, 王可, 等.晚全新世东海泥质区物源输入、源区植被变化及其影响因素:来自MD06-3039A孔的正构烷烃记录[J].第四纪研究, 2018, 38 (5):1293-1303.

    Zhen Bang, Zhou Bin, Wang Ke, et al. Changes of provenance input and source vegetation changes and their impact factors since Late Holocene based on n-alkanes records from core MD06-3039A in the muddy area of the East Chinese[J]. Quaternary Sciences, 2018, 38 (5):1293-1303.

    [45]

    Yao Yuan, Zhang Jiaju, Bauersachs T, et al. Effect of water depth on the TEX86 proxy in volcanic lakes of Northeastern China[J]. Organic Geochemistry, 2019, 129:88-98. doi.org/10.1016/j.orggeochem.2019.01.014. doi: 10.1016/j.orggeochem.2019.01.014

    [46]

    Huguet C, Hopmans E C, Febo-Ayala W, et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids[J]. Organic Geochemistry, 2006, 38 (8): 1457-1457. doi: 10.1016/j.orggeochem.2006.05.008

    [47]

    柴社立, 高丽娜, 邱殿明, 等.吉林省西部月亮湖沉积物的210Pb和137Cs测年及沉积速率[J].吉林大学学报(地球科学版), 2013 (1):134-141.

    Chai Sheli, Gao Lina, Qiu Dianming, et al. 210Pb and 137Cs dating of the sediment core and its recent accumulation rates in Yueliang Lake in west Jilin Province[J]. Journal of Jilin University(Earth Science Edition), 2013, 43 (1):134-141.

    [48]

    Shanahan T M, Hughen K A, Van Mooy B A S. Temperature sensitivity of branched and isoprenoid GDGTs in Arctic lakes[J]. Organic Geochemistry, 2013, 64:119-128. doi:10.1016/j.orggeochem.2013.09.010.

    [49]

    Peterse F, Vonk J E, Holmes R M, et al. Branched glycerol dialkyl glycerol tetraethers in Arctic lake sediments:Sources and implications for paleothermometry at high latitudes[J]. Journal of Geophysical Research:Biogeosciences, 2014, 119 (8):1738-1754. doi: 10.1002/2014JG002639

    [50]

    Rueda G, Rosell-Melé A, Escala M, et al. Comparison of instrumental and GDGT-based estimates of sea surface and air temperatures from the Skagerrak[J]. Organic Geochemistry, 2009, 40 (2):287-291. doi: 10.1016/j.orggeochem.2008.10.012

    [51]

    Loomis S E, Russell J M, Heureux A M, et al. Seasonal variability of branched glycerol dialkyl glycerol tetraethers(brGDGTs)in a temperate lake system[J]. Geochimica et Cosmochimica Acta, 2014, 144:173-187. doi:10.1016/j.gca.2014.08.027.

    [52]

    Ding S, Xu Y, Wang Y, et al. Distribution of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai-Tibetan Plateau:Implications of brGDGTs-based proxies in cold and dry regions[J]. Biogeosciences, 2015, 12 (11):3141-3151. doi: 10.5194/bg-12-3141-2015

    [53]

    Peterse F, van Der Meer J, Schouten S, et al. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils[J]. Geochimica et Cosmochimica Acta, 2012, 96:215-229. doi:10.1016/j.gca.2012.08.011.

    [54]

    Dang X, Ding W, Yang H, et al. Different temperature dependence of the bacterial brGDGT isomers in 35 Chinese lake sediments compared to that in soils[J]. Organic Geochemistry, 2018, 119:72-79. doi:10.1016/j.orggeochem.2018.02.008.

    [55]

    刘禹, 相楠, 宋慧明.内蒙古阿尔山过去187年温度变化的树轮记录[J].地球环境学报, 2012, 12 (3):23-28.

    Liu Yu, Xiang Nan, Song Huiming. Tree-ring temperature records in Arxan, Inner Mongolia for the past 187 years[J]. Journal of Earth Environment, 2012, 3 (3):23-28.

    [56]

    郭正府.火山喷发对地表温度影响的研究:以冈底斯新生代火山喷发为例[J].地学工程进展, 1997, 14 (3):48-52.

    Guo Zhengfu. Impact of volcanic eruption on surface temperature—An example from Gangdisi Cenozoic volcanic eruption[J]. Advance in Earth Science Engineering, 1997, 14 (3):48-52.

    [57]

    高超超.基于极地冰芯的历史火山活动序列重建研究进展[J].极地研究, 2014, 26 (4):460-468.

    Gao Chaochao. Progress of research on bipolar-ice-core-based volcanic forcing index reconstructions[J]. Journal of Chemical Information and Modeling, 2014, 26 (4):460-468.

    [58]

    Hammer Ø, Harper D, And Ryan P. PAST:Paleontological statistics software package for education and data analysis[J]. Palaeontologia Electronica, 2001, 4 (1):1-9.

    [59]

    Press W H, Teukolsky S A, Flannery B P, et al. Numerical Recipes in Fortran:The Art of Scientific Computing[M]. Cambridge:Cambridge University Press, 1992: 27-75.

    [60]

    李宜垠, 李博闻, 徐鑫.大兴安岭北部满归泥炭孢粉重建的过去2100年古气候[J].第四纪研究, 2019, 39 (4):1034-1041.

    Li Yiyin, Li Bowen, Xu Xin. Pollen-based climate reconstruction during the past 2100 years from the MG peat profile in the northern Daxing'an Mountains[J]. Quaternary Sciences, 2019, 39 (4):1034-1041.

    [61]

    张伟宏, 陈仕涛, 汪永进, 等.小冰期东亚夏季风快速变化特征:湖北石笋记录[J].第四纪研究, 2019, 39 (3):765-774.

    Zhang Weihong, Chen Shitao, Wang Yongjin, et al. Rapid change in the East Asian summer monsoon:Stalagmite records in Hubei, China[J]. Quaternary Sciences, 2019, 39 (3):765-774.

    [62]

    Chu G, Sun Q, Wang X, et al. Seasonal temperature variability during the past 1600 years recorded in historical documents and varved lake sediment profiles from Northeastern China[J]. The Holocene, 2012, 22 (7):785-792. doi: 10.1177/0959683611430413

    [63]

    于健, 林万众, 闫伯前, 等.基于树木年轮重建秦岭太白山1872年以来6-8月最低温度变化[J].第四纪研究, 2018, 38 (4):971-980.

    Yu Jian, Lin Wanzhong, Yan Boqian, et al. Tree-ring reconstruction of June-August mean minimum temperature back to 1872 A.D. in Qinling Mountains, Northwest China[J]. Quaternary Sciences, 2018, 38 (4):971-980.

    [64]

    牛震敏, 杨凤梅, 王乃昂, 等.巴颜喀拉山东端过去376年来夏季气温变化[J].第四纪研究, 2016, 36 (4):983-992.

    Niu Zhenmin, Yang Fengmei, Wang Nai'ang, et al. Summer temperature variability for eastern Bayan Har Mountains over the past 376 years[J]. Quaternary Sciences, 2016, 36 (4):983-992.

    [65]

    任军莉, 刘禹, 宋慧明, 等.甘肃临夏地区过去195年最高温度历史重建——基于紫果云杉树轮宽度资料[J].第四纪研究, 2014, 34 (6):1270-1279.

    Ren Junli, Liu Yu, Song Huiming, et al. The historical reconstruction of the maximum temperature over the past 195 years, Linxia region, Gansu Province—Based on the data from Picea purpurea Mast[J]. Quaternary Sciences, 2016, 36 (4):983-992.

    [66]

    丁玲玲, 葛全胜, 郑景云, 等. 1736-2009年华南地区冬季年平均气温序列重建[J].第四纪研究, 2013, 33 (6):1191-1198. doi: 10.3969/j.issn.1001-7410.2013.06.15

    Ding Lingling, Ge Quansheng, Zheng Jingyun, et al. Reconstruction of annual winter mean temperature series in Southern China during 1736 to 2009[J]. Quaternary Sciences, 2013, 33 (6):1191-1198. doi: 10.3969/j.issn.1001-7410.2013.06.15

    [67]

    李宗善, 刘国华, 傅伯杰, 等.利用树木年轮宽度资料重建川西米亚罗地区过去200年夏季温度的变化[J].第四纪研究, 2011, 31 (3):522-534. doi: 10.3969/j.issn.1001-7410.2011.03.16

    Li Zongshan, Liu Guohua, Fu Bojie, et al. Tree ring-based summer temperature reconstructionover the past 200 years in Miyaluo of western Sichuan, China[J]. Quaternary Sciences, 2011, 31 (3):522-534. doi: 10.3969/j.issn.1001-7410.2011.03.16

    [68]

    刘禹, 田沁花, 宋慧明, 等.以树轮宽度重建公元1558年以来华山5-6月平均温度及20世纪中后期升温[J].第四纪研究, 2009, 29 (5):888-895. doi: 10.3969/j.issn.1001-7410.2009.05.05

    Liu Yu, Tian Qinhua, Song Huiming, et al. Tree-ring width based May-June mean temperature reconstruction for Huashan Mountain since A.D. 1558 and 20th century warming[J]. Quaternary Sciences, 2009, 29 (5):888-895. doi: 10.3969/j.issn.1001-7410.2009.05.05

    [69]

    宋慧明, 刘禹, 倪万眉, 等.以树轮宽度重建九寨沟1750年以来冬半年平均最低温度[J].第四纪研究, 2007, 27 (4):486-491. doi: 10.3321/j.issn:1001-7410.2007.04.002

    Song Huiming, Liu Yu, Ni Wanmei. et al. Winter mean lowest temperature derived from tree-ring width in Jiuzhaigou region, China since 1750 A.D.[J]. Quaternary Sciences, 2007, 27 (4):486-491. doi: 10.3321/j.issn:1001-7410.2007.04.002

    [70]

    李明启, 邵雪梅.基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J].地球科学进展, 2016, 31 (6):634-642.

    Li Mingqi, Shao Xuemei. Study on the relationship between large volcanic eruptions and temperature variation based on tree-ring data in the eastern Tibetan Plateau during the past millenium[J]. Advances in Earth Science, 2016, 31 (6):634-642.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(4)

Article Metrics

Article views(290) PDF downloads(21) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint