2020 Vol. 40, No. 3
Article Contents

Zhang Na, Dang Haowen, Jian Zhimin. Mid- to Late-Pleistocene orbital-scale changes in the upper-ocean structure of the northern South China Sea: Planktonic foraminiferal oxygen and carbon stable isotope records of IODP Site U1501[J]. Quaternary Sciences, 2020, 40(3): 605-615. doi: 10.11928/j.issn.1001-7410.2020.03.02
Citation: Zhang Na, Dang Haowen, Jian Zhimin. Mid- to Late-Pleistocene orbital-scale changes in the upper-ocean structure of the northern South China Sea: Planktonic foraminiferal oxygen and carbon stable isotope records of IODP Site U1501[J]. Quaternary Sciences, 2020, 40(3): 605-615. doi: 10.11928/j.issn.1001-7410.2020.03.02

Mid- to Late-Pleistocene orbital-scale changes in the upper-ocean structure of the northern South China Sea: Planktonic foraminiferal oxygen and carbon stable isotope records of IODP Site U1501

  • Fund Project:

    国家自然科学基金项目(批准号:41630965)和国家重点基础研究发展计划项目(批准号:2018YFE0202400)共同资助

More Information
  • After the mid-Pleistocene Transition(MPT)and the mid-Brunhes Event(MBE), the Late Quaternary glacial cycle with a powerful ca.100-ka cycle was finally established. Tropical forcing involving the global carbon reservoir, sea surface and thermocline temperature changes in the tropical Pacific has been proposed to have a significant impact on global climate change. However, studies about the changes in the thermocline of the northern South China Sea(SCS), especially that of the MBE, are relatively short, not to mention that there still lacks any in-depth exploration that links the monsoon evolution and the upper-ocean dynamics. Here we analyze the oxygen and carbon stable isotopes of surface-dwelling and subsurface dwelling planktonic foraminifera, Globigerinoides ruber and Pulleniatina obliquiloculata, respectively, from the sediment records of Site U1501 (18°53.09'N, 115°45.95'E; 2846 m depth)drilled by the International Ocean Discovery Program(IODP)Expedition 368. In this work, we analyzed a total of 230 samples from the depth range of 0~46 m at Hole U1501C. The age model, covering the last 1.5 Ma, was established by comparing the planktonic foraminiferal δ18O record of U1501 with the LR04 stack and the planktonic δ18O of ODP1146. Using the stable isotopes of the two planktonic foraminifera, the Middle- to Late-Pleistocene orbital-scale variations in the upper-water structure of the northern SCS was reconstructed. The results show that the peak glacial values of both the surface and subsurface δ18O gradually became heavier after 0.9 Ma and 0.4 Ma, accompanying with an increase in their glacial-interglacial ranges, while their difference indicates that the upper-water temperature gradient decreased at around 0.9 Ma and 0.6 Ma. These trends consistently suggest a response of the northern SCS upper-ocean to the expansion of the Northern Hemisphere ice sheet and the enhancement of the East Asian winter monsoon. During the MPT, changes in glacials were stronger than those in interglacials, and the subsurface seawater temperature decreased more significantly than the surface. During the MBE period, the surface seawater became colder and the subsurface water remained relatively stable. After MBE, both the surface and subsurface δ18O fluctuate more strongly on the glacial-interglacial cycle, and the surface seawater became significantly warmer during the interglacial periods while the subsurface seawater became colder during the glacial period. In MIS 13, an important interglacial just before MBE, the relatively more positive surface δ18O in U1501C reflects a relatively cold interglacial, which is apparently contrary to the warm and wet conditions recorded in Chinese Loess Plateau, and thus indicating a reduced latitudinal gradient over the East Asia during MIS 13. The synchronous heavier δ13C of the two planktonic foraminifera at ca. 0.5 Ma(δ13Cmax-Ⅱ)in Site U1501 suggests that the carbon isotope maximum events(δ13Cmax)may be related to an increased land reservoir of 12C due to enhanced summer monsoon, or a change in the ratio between oceanic organic/inorganic carbon pools due to increased terrigenous nutrient input. The greatly decreased surface-subsurface δ13C gradient in the U1501C records may suggest an enhancement of upper-ocean mixing in the northern South China Sea during δ13Cmax-Ⅱ.

  • 加载中
  • [1]

    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003. doi:1010.1029/2004PA001071.

    [2]

    Jouzel J, Masson-Delmotte V, Cattani O, et al. Orbital and millennial Antarctic climate variability over the past 800, 000 years[J]. Science, 2007, 317(5839):793-796. doi: 10.1126/science.1141038

    [3]

    Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present[J]. Nature, 2008, 453(7193):379-382. doi: 10.1038/nature06949

    [4]

    汪品先, 李前裕, 田军, 等.从南海看第四纪大洋碳储库的长周期循环[J].第四纪研究, 2015, 35(6):1297-1319.

    Wang Pinxian, Li Qianyu, Tian Jun, et al. Long-term cycles in carbon reservoir of the Quaternary ocean:A perspective from the South China Sea[J]. Quaternary Sciences, 2015, 35(6):1297-1319.

    [5]

    Berger W H, Wefer G. On the dynamics of the ice ages:Stage-11 paradox, mid-Brunhes climate shift, and 100-ky cycle[J]. Geophysical Monograph, 2003, 137:41-59. doi:10.1029/137GM04.

    [6]

    Yin Q. Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature[J]. Nature, 2013, 494(7436):222-225. doi: 10.1038/nature11790

    [7]

    Berger W H, Jansen E. Mid-Pleistocene climate shift-The Nansen connection[J]. Geophysical Monograph, 1994, 85:295-311. doi:10.1029/GM085p0295.

    [8]

    Shackleton N J. The 100, 000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity[J]. Science, 2000, 289(5486):1897-1902. doi: 10.1126/science.289.5486.1897

    [9]

    Kemp A, Grigorov I, Pearce R B, et al. Migration of the Antarctic Polar Front through the mid-Pleistocene transition:Evidence and climatic implications[J]. Quaternary Science Reviews, 2010, 29(17-18):1993-2009. doi: 10.1016/j.quascirev.2010.04.027

    [10]

    Barth A M, Clark P U, Bill N S, et al. Climate evolution across the Mid-Brunhes Transition[J]. Climate of the Past, 2018, 14(12):2071-2087. doi: 10.5194/cp-14-2071-2018

    [11]

    Sun D Z. A possible effect of an increase in the warm-pool SST on the magnitude of El Niño warming[J]. Journal of Climate, 2003, 16(2):185-205.

    [12]

    Yin J H, Battisti D S. The importance of tropical sea surface temperature patterns in simulations of Last Glacial Maximum climate[J]. Journal of Climate, 2001, 14(4):565-581.

    [13]

    Wang P, Tian J, Cheng X, et al. Major Pleistocene stages in a carbon perspective:The South China Sea record and its global comparison[J]. Paleoceanography, 2004, 19(4):doi:10.1029/2003PA000991.

    [14]

    Wang P, Tian J, Cheng X, et al. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event[J].Geology, 2003, 31(3):239-242. doi: 10.1130/0091-7613(2003)031<0239:CRCPMI>2.0.CO;2

    [15]

    Medina-Elizalde M, Lea D W. The mid-Pleistocene transition in the tropical Pacific[J]. Science, 2005, 310(5750):1009-1012. doi: 10.1126/science.1115933

    [16]

    de Garidel-Thoron T, Rosenthal Y, Bassinot F, et al. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years[J]. Nature, 2005, 433(7023):294-298. doi: 10.1038/nature03189

    [17]

    Rutherford S, D'Hondt S. Early onset and tropical forcing of 100, 000-year Pleistocene glacial cycles[J]. Nature, 2000, 408(6808):72-75. doi: 10.1038/35040533

    [18]

    Raddatz J, Nürnberg D, Tiedemann R, et al. Southeastern marginal West Pacific Warm Pool sea-surface and thermocline dynamics during the Pleistocene (2.5-0.5 Ma)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 471:144-156. doi:10.1016/j.palaeo.2017.01.024.

    [19]

    Xu J, Holbourn A, Kuhnt W, et al. Changes in the thermocline structure of the Indonesian outflow during TerminationsⅠandⅡ[J]. Earth and Planetary Science Letters, 2008, 273(1-2):152-162. doi: 10.1016/j.epsl.2008.06.029

    [20]

    Dang H, Jian Z, Bassinot F, et al. Decoupled Holocene variability in surface and thermocline water temperatures of the Indo-Pacific Warm Pool[J]. Geophysical Research Letters, 2012, 39(1):doi:10.1029/2011GL050154.

    [21]

    Jian Z, Wang Y, Dang H, et al. Half-precessional cycle of thermocline temperature in the western equatorial Pacific and its bihemispheric dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(13):7044-7051. doi: 10.1073/pnas.1915510117

    [22]

    Jin H, Jian Z. Millennial-scale climate variability during the mid-Pleistocene transition period in the northern South China Sea[J]. Quaternary Science Reviews, 2013, 70:15-27. doi:10.1016/j.quascirev.2013.03.012.

    [23]

    金海燕, 翦知湣.中更新世气候转型期南海北部和南部的气候变化差异[J].第四纪研究, 2008, 28(3):381-390. doi: 10.3321/j.issn:1001-7410.2008.03.001

    Jin Haiyan, Jian Zhimin. Comparison of climate change between northern and southern South China Sea during the mid-Pleistocene climate transition period[J]. Quaternary Sciences, 2008, 28(3):381-390. doi: 10.3321/j.issn:1001-7410.2008.03.001

    [24]

    金海燕, 翦知湣.南海北部ODP1144站中更新世气候转型期有孔虫稳定同位素古气候意义[J].地球科学进展, 2007, 22(9):914-921. doi: 10.3321/j.issn:1001-8166.2007.09.005

    Jin Haiyan, Jian Zhimin. Paleoclimatic instability during the mid-Pleistocene Transition:Implications from foraminiferal stable isotope at ODP Site 1144, northern South China Sea[J]. Advances in Earth Science, 2007, 22(9):914-921. doi: 10.3321/j.issn:1001-8166.2007.09.005

    [25]

    王海粟, 党皓文, 翦知湣.中更新世转型时期南海北部上层水体结构演化特征——ODP1146站浮游有孔虫稳定同位素记录[J].第四纪研究, 2019, 39(2):316-327.

    Wang Haisu, Dang Haowen, Jian Zhimin. Variations in the upper water structure of northern South China Sea during the mid-Pleistocene Climate Transition period:Planktonic foraminifera oxygen isotope records of ODP site 1146[J]. Quaternary Sciences, 2019, 39(2):316-327.

    [26]

    Jian Z, Zhao Q, Cheng X, et al. Pliocene-Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 193(3-4):425-442. doi: 10.1016/S0031-0182(03)00259-1

    [27]

    Li Q, Wang P, Zhao Q, et al. Paleoceanography of the mid-Pleistocene South China Sea[J]. Quaternary Science Reviews, 2008, 27(11-12):1217-1233. doi: 10.1016/j.quascirev.2008.02.007

    [28]

    Larsen H C, Jian Z, Zarikian C A A, et al. Site U1501[M]. Proceedings of the International Ocean Discovery Program Volume 367/368. Washington D. C., International Ocean Discovery Program, 2018, doi: 10.14379/iodp.proc.367368.105.2018.

    [29]

    陈隆勋, 张博, 张瑛.东亚季风研究的进展[J].应用气象学报, 2006, 17(6):711-724. doi: 10.3969/j.issn.1001-7313.2006.06.009

    Chen Longxun, Zhang Bo, Zhang Ying. Progress in research on the East Asian Monsoon[J]. Journal of Applied Meteorological Science, 2006, 17(6):711-724. doi: 10.3969/j.issn.1001-7313.2006.06.009

    [30]

    Chen M T, Wang C H, Huang C Y, et al. A Late Quaternary planktonic foraminifer faunal record of rapid climatic changes from the South China Sea[J]. Marine Geology, 1999, 156(1-4):85-108. doi: 10.1016/S0025-3227(98)00174-1

    [31]

    Nan F, Xue H, Yu F. Kuroshio intrusion into the South China Sea:A review[J]. Progress in Oceanography, 2015, 137:314-333. doi:10.1016/j.pocean.2014.05.012.

    [32]

    Cheng X, Huang B, Jian Z, et al. Foraminiferal isotopic evidence for monsoonal activity in the South China Sea:A present-LGM comparison[J]. Marine Micropaleontology, 2005, 54(1-2):125-139. doi: 10.1016/j.marmicro.2004.09.007

    [33]

    Clemens S C, Prell W L, Sun Y, et al. Southern Hemisphere forcing of Pliocene δ18O and the evolution of Indo-Asian monsoons[J]. Paleoceanography, 2008, 23(4):doi:10.1029/2008PA001638.

    [34]

    Tian J, Wang P, Chen R, et al. Quaternary upper ocean thermal gradient variations in the South China Sea:Implications for east Asian monsoon climate[J]. Paleoceanography, 2005, 20(4). doi:10.1029/2004PA001115.

    [35]

    Zheng F, Li Q, Li B, et al. A millennial scale planktonic foraminifer record of the mid-Pleistocene climate transition from the northern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 223(3-4):349-363. doi: 10.1016/j.palaeo.2005.04.018

    [36]

    Sun X, Luo Y, Huang F, et al. Deep-sea pollen from the South China Sea:Pleistocene indicators of East Asian monsoon[J]. Marine Geology, 2003, 201(1-3):97-118. doi: 10.1016/S0025-3227(03)00211-1

    [37]

    Tian J, Wang P, Cheng X. Pleistocene precession forcing of the upper ocean structure variations of the southern South China Sea[J]. Progress in Natural Science, 2004, 14(11):1004-1009. doi: 10.1080/10020070412331344701

    [38]

    Li L, Li Q, Tian J, et al. A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change[J]. Earth and Planetary Science Letters, 2011, 309(1-2):10-20. doi: 10.1016/j.epsl.2011.04.016

    [39]

    Herbert T D, Peterson L C, Lawrence K T, et al. Tropical ocean temperatures over the past 3.5 million years[J]. Science, 2010, 328(5985):1530-1534. doi: 10.1126/science.1185435

    [40]

    Martínez-Garcia A, Rosell-MeléA, McClymont E L, et al. Subpolar link to the emergence of the modern equatorial Pacific cold tongue[J]. Science, 2010, 328(5985):1550-1553. doi: 10.1126/science.1184480

    [41]

    Sun Y, Clemens S C, An Z, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2006, 25(1-2):33-48. doi: 10.1016/j.quascirev.2005.07.005

    [42]

    Hao Q, Wang L, Oldfield F, et al. Delayed build-up of Arctic ice sheets during 400, 000-year minima in insolation variability[J]. Nature, 2012, 490(7420):393-396. doi: 10.1038/nature11493

    [43]

    Guo Z, Berger A, Yin Q, et al. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records[J]. Climate of the Past, 2009, 5(1):21-31. doi: 10.5194/cp-5-21-2009

    [44]

    Yin Q, Guo Z. Strong summer monsoon during the cool MIS-13[J]. Climate of the Past, 2008, 4:29-34. doi:10.5194/cp-14-2071-2018.

    [45]

    Jian Z, Wang P, Saito Y, et al. Holocene variability of the Kuroshio current in the Okinawa Trough, northwestern Pacific Ocean[J]. Earth and Planetary Science Letters, 2000, 184(1):305-319. doi: 10.1016/S0012-821X(00)00321-6

    [46]

    Liu C, Cheng X. Exploring variations in upper ocean structure for the last 2 Ma of the Nansha area by means of calcareous nannofossils[J]. Science in China, 2001, 44(10):905-911. doi: 10.1007/BF02907082

    [47]

    Romero O, Schmieder F. Occurrence of thick Ethmodiscus oozes associated with a terminal mid-Pleistocene Transition event in the oligotrophic subtropical South Atlantic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 235(4):321-329. doi: 10.1016/j.palaeo.2005.10.026

    [48]

    金海燕, 翦知湣, 乔培军, 等.中更新世气候转型期西太平洋暖池的表层海水温度和氧同位素变化[J].海洋地质与第四纪地质, 2012, 32(4):107-113.

    Jin Haiyan, Jian Zhimin, Qiao Peijun, et al. The sea surface temperature and oxygen isotope changes in the western pacific warm pool during the Mid-Pleistocene Transition period[J]. Marine Geology & Quaternary Geology, 2012, 32(4):107-113.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(384) PDF downloads(151) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint